Показатели центральной тенденции. Средние.


 

В отличие от индивидуальных числовых характеристик средние величины обладают большей устойчивостью, способностью характеризовать целую группу одним (средним) числом.

В зависимости от того, как распределены исходные данные - в равно- или неравноинтервальный вариационный ряд, для их характеристики применяют разные средние величины. Именно при распределении собранных данных в неравноинтервальный вариационный ряд более подходящей обобщающей характеристикой изучаемого объекта служит так называемая плотность распределения, т. е. отношение частот или частостей к ширине классовых интервалов. Кроме того, числовыми характеристиками таких рядов могут служить средние из абсолютных или относительных показателей плотности распределения. Средняя плотность показывает, сколько единиц данной совокупности приходится в среднем на интервал, равный единице измерения учитываемого признака.

В качестве статистических характеристик равноинтервальных вариационных рядов применяют средние величины.

Средняя арифметическая. Этот показатель является центром распределения, вокруг которого группируются все варианты статистической совокупности. Средняя арифметическая может быть простой и взвешенной. Простую арифметическую определяют как сумму всех членов совокупности, деленную на их общее число.

Когда отдельные варианты повторяются, среднюю арифметическую вычисляют по формуле: и называют взвешенной средней.

Имеется распределение учета численности косуль за апрель 2003г. Требуется вычислить среднее количество косуль за учет.

Число косуль 0 1 2 3 4 5 Итого 30
Число учетов 3 7 10 4 3 3

X=(7+20+12+12+15)/30=66/30=2.02.



Дата добавления: 2020-10-01; просмотров: 366;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.