ОДНОГРУППОВОЕ ДИФФУЗИОННОЕ ПРИБЛИЖЕНИЕ
В стационарных нейтронных методах применяют полиэнергетические радиоизотопные источники нейтронов, обладающие непрерывным спектром. В этом случае функция распределения определяется следующим образом:
(8.105)
где - так называемая «весовая» функция спектра;
(8.106)
Интегрирование ведется по всей области определения спектра.
На рис.8.5 приведены функции пространственного распределения нейтронов с фиксированной конечной энергией ,соответствующие отдельным спектральным полосам (линиям) спектра, и результирующее распределение, соответствующее всему спектру. Форма результирующего пространственного распределения отличается от формы распределений, порожденных отдельными спектральными линиями.
Это явление называется спектральным эффектом полиэнергетического источника и обусловлено тем, что вклад различных участков спектра в результирующую плотность потока нейтронов сильно изменяется с увеличением расстояния от источника. Если на малых расстояниях от источника основной вклад дает «мягкая» часть спектра, то на больших расстояниях определяющий вклад дает «жесткая» часть спектра. Иными словами, с точки зрения пространственного распределения нейтронов на больших расстояниях полиэнергетический источник как бы вырождается в жесткий моноэнергетический.
Рис. 8.5. Пространственное распределение нейтронов с заданной конечной энергией от разных моноэнергетических источников (1) и результирующее распределение для полиэнергетического источника (2).
Благодаря спектральному эффекту, функция пространственного распределения нейтронов полиэнергетического источника приобретает более простую форму по сравнению с функциями распределения отдельных спектральных линий. В координатах она как бы «спрямляется» (линеаризуется).
Анализ результатов многочисленных экспериментов показал, что пространственное изменение плотности потока нейтронов полиэнергетических источников в различных средах (исключая малые водородосодержания) можно аппроксимировать простыми выражениями типа
, (8.107)
где k принимает значение 0 или 1.
Это распределение справедливо для практически важной: пространственной области — на средних и больших расстояниях: от источника. В выражении (24) имеются два свободных параметра и , для определения которых используются следующие точные условия:
1о. (8.108)
(спектр плотности потока в бесконечной однородной среде с равномерно распределенными источниками; интегрирование распространено на весь бесконечный объем V). При отсутствии поглощения это просто закон сохранения числа замедленных нейтронов во всем бесконечном пространстве.
2о. , (8.108')
где — полный возраст нейтронов полиэнергетическог источника; — длина замедления нейтронов. Таким образом, интегральные характеристики приближенного распределения должны совпадать с точными. Последние могут быть вычислены с учетом неупругого рассеяния и дифракционной анизотропии, а также спектра полиэнергетического источника. Условия (23) позволяют определить свободные параметры эмпирического распределения.
При k=0 определяя параметры и , получаем (Я.Б.Зельдович, И.И.Гуревич):
, (8.109)
где
. (8.109 )
Для изучения распределения нейтронов в горных породах эта формула впервые была применена С. А. Кантором (1955).
При k=1 распределение (24) называется «диффузионным» или «одногрупповым» ядром. Оно лучше согласуется с экспериментальными данными (особенно для водородсодержащих сред) и обладает более широкой областью применимости.
Определяя свободные параметры, как выше, находим
. (8.110)
На рис.8.6 показаны результаты расчета пространственного распределения плотности потока надтепловых (индиевых) нейтронов Ra—Ве- источника в воде в одногрупповом диффузионном приближении в сравнении с экспериментальными данными. Практически на всех исследованных расстояниях r от источника (исключая окрестность источника) распределение (8.110) хорошо согласуется с экспериментальными данными.
Рис.8.6. Распределение индиевых нейтронов (Ra-Ве) - источника в воде в сравнении с результатами расчетов в одногрупповом диффузионном приближении (кривая 1) =6,8 см. Кривая 2 иллюстрирует неправильное применение возрастного приближения (полный возраст нейтронов полиэнергетического источника отождествлен с фермиевским)
Это распределение имеет одно важное практическое преимущество, заключающееся в том, что оно удовлетворяет хорошо изученному дифференциальному уравнению второго порядка с постоянными коэффициентами:
. (8.111)
Уравнение (8.111) совпадает с уравнением диффузии, поэтому основанное на нем приближение (8.110) называют одногрупповым диффузионным приближением (ОДП). В этом приближении распределение замедленных нейтронов полиэнергетического источника (каждому участку энергетического спектра которого соответствует своя «группа» нейтронов) заменяется одной группой нейтронов, характеризующейся величиной .
Численное решение этого уравнения с соответствующими краевыми и граничными условиями позволяет распространить рассмотренный способ приближенного описания пространственного распределения замедленных нейтронов в бесконечной однородной среде на более общий (и с практической точки зрения значительно более важный) случай системы скважина-пласт.
Величина (длина замедления нейтронов) играет роль диффузионной длины, а смысл коэффициента диффузии D(E) имеет величина
,
где — замедляющая способность среды.
Коснемся вопроса об условиях применимости решений уравнения (27). С одной стороны, уравнение диффузии предполагает выполнение закона Фика и неравенства
.
Это означает, что уравнение (8.111) перестает быть справедливым, когда коэффициент диффузии и плотность потока нейтронов заметно изменяются на расстояниях порядка длины замедления. Последнее всегда имеет место вблизи границ раздела сред с различными нейтронными свойствами, что характерно для скважинных условий применения нейтронных методов. С другой стороны, аналогия уравнения (8.111) с уравнением диффузии является формальной, поэтому строгое ограничение уравнения диффузии не может механически переноситься на уравнение, которому удовлетворяет аппроксимирующее распределение.
Несмотря на свою простоту, ОДП позволяет сделать целый ряд практически полезных и важных выводов относительно закономерностей стационарных нейтронных методов в системе скважина-пласт.
Можно показать[3], что возраст и длина замедления нейтронов полиэнергетического источника равны возрасту и длине замедления нейтронов моноэнергетического источника с энергией , равной средней энергии спектра полиэнергетического источника:
(8.112)
(8.113)
Рис.8.7. Распределения по сферическим слоям нейтронов индиевого резонанса Po-Be источника в воде (1) и кварцевом песке различной влажности (по экспериментальным данным А. В. Золотова): 35% (2), 7% (3), 3% (4).
Для более полного раскрытия физического смысла параметра рассмотрим функцию
, (8.114)
описывающую число нейтронов с заданной энергией в сферическом слое толщиной на расстоянии от источника. При эта функция характеризует пространственное распределение замедленных нейтронов в сферических слоях единичной толщины. Функция обладает максимумом (рис.8.7) положение которого легко найти из условия
,
из которого следует
(8.115)
Таким образом, длина замедления нейтронов равна расстоянию от источника до максимума функции распределения по сферическим слоям нейтронов с заданной энергией .
Значение функции p*(r, ε) в максимуме будет:
Отсюда следует, что при фиксированной конечной энергии Е с уменьшением замедляющей способности среды максимальная амплитуда функции убывает (амплитуда функции возрастает).
Определим пространственную дисперсию D[(E)] функции p*(r, E). По определению, D[(E)] равна:
D[(E)] = . (8.116)
Здесь - второй пространственный момент функции , равный по определению:
,
- первый пространственный момент функции , равный:
.
Подставляя эти величины в (8.114), находим:
. (8.117)
Итак, пространственная дисперсия функции распределения нейтронов по сферическим слоям равна удвоенному значению полного возраста нейтронов.
На рис.8.7 приведены распределения по сферическим слоям надтепловых нейтронов Po-Be источника в кварцевом песчанике с различной водонасыщенной пористостью, построенные по экcпериментальным данным А.В.Золотовым (1956). Поскольку выражение (8.110) особенно хорошо описывает пространственное распределение нейтронов в средах с высоким водородсодержанием, для последних результат (8.115) обладает количественной достоверностью. Сравнивая расстояния до максимума этих распределений с соответствующими значениями длины замедления нейтронов P-Be источника в воде, можно убедиться, что это соотношение выполняется.
Для определения полного возраста (квадрата длины замедления) по результатам измерений обычно строят графики функций p(r;E) и r2p(r;E), и вычисляют площади, ограниченные полученными кривыми, после чего величина определяется из отношений этих площадей:
. (8.118)
Дата добавления: 2020-08-31; просмотров: 447;