Виды насадков и их применение
Насадкой называется отрезок трубы, длина которого в несколько раз больше внутреннего диаметра. Рассмотрим случай, когда к отверстию в стенке резервуара присоединен насадок диаметром d, равным внутреннему диаметру отверстия.
На рис. (10.2) показаны наиболее распространенные виды насадок, применяемые на практике:
а - цилиндрический внешний; б -конический расходящийся; в - конический сходящийся; ; г - цилиндрический внутренний; д - коноидальный; е - комбинированный.
Рис 10.2 Виды насадков
Цилиндрические насадки встречаются в виде деталей гидравлических систем машин и сооружений. Конические сходящиеся и коноидальные насадки применяют для увеличения скорости и дальности полета струи воды (пожарные брандспойты, стволы гидромониторов, форсунки, сопла и др.).
Конические расходящиеся насадки применяют для уменьшения скорости и увеличения расхода жидкости и давления на выходе во всасывающих трубах турбин и др. В эжекторах и инжекторах также имеются конические насадки, как основной рабочий орган.
Рассмотрим действие внешнего цилиндрического насадка (рис.10.3).
Струя жидкости при входе в насадок сжимается, а потом расширяется и заполняет все сечение. Вследствие разряжения в сжатом сечении насадка жидкость может подсасываться из резервуара, скорость протекания жидкости во входном отверстии возрастает. Из насадка струя вытекает полным сечением, поэтому коэффициент сжатия, отнесенный к выходному сечению, , а коэффициент расхода. Из насадка струя вытекает полным сечением, поэтому коэффициент сжатия, отнесенный к выходному сечению, , а коэффициент расхода насадка будет возрастать, в сравнении с истечением жидкости через отверстие в тонкой стенке. Однако при использовании насадка, появляются дополнительные потери из-за трения жидкости о внутренние стенки насадка и расширения струи в нем. Коэффициент цилиндрического насадка зависит от числа и относительной длины , в среднем, его значение может быть принято .
Рис.10.3 Внешний цилиндрический насадок
Таким образом, уравнения для определения скорости и расхода жидкости через насадок имеют тот же вид, что и для отверстия, но другие значения коэффициентов
Сравнивая коэффициенты расхода и скорости для насадка и отверстия в тонкой стенке, устанавливаем, что насадок увеличивает расход и уменьшает скорость истечения.
Во внутренних цилиндрических насадках сжатие струи на входе больше, чем у внешних, и поэтому значения коэффициентов расхода и скорости меньше. Опытами найдены коэффициенты для воды .
В наружных конических сходящихся насадках сжатие и расширение струи на входе меньше, чем в наружных цилиндрических, но появляется внешнее сжатие на выходе из насадки. Поэтому коэффициенты , и зависят от угла конусности. С увеличением угла конусности до 13° коэффициент расхода насадка растет, а с дальнейшим увеличением угла уменьшается.
Конические сходящиеся насадки применяют в тех случаях, когда нужно получить большую выходную скорость струи, дальность полета и силу удара струи (гидромониторы, пожарные стволы и т. п.).
В конических расходящихся насадках внутреннее расширение струи после сжатия больше, чем в конических сходящихся и цилиндрических, поэтому потери напора здесь возрастают и коэффициент скорости уменьшается. Внешнего сжатия при выходе нет.
Коноидальные насадки имеют очертания формы струи, вытекающей через отверстие в тонкой стенке. Для этих насадок значение коэффициентов составляет: .
Их применяют в пожарных брандспойтах, хотя, изготовление их очень сложное.
Гидравлический удар
Гидравлический удар представляет собой колебательный процесс, возникающий в трубопроводе с капельной жидкостью при внезапном изменении скорости ее движения. Этот процесс характеризуется чередованием резких повышении и понижений давления, происходящих за достаточно малый промежуток времени.
Гидравлический удар возникает вследствие быстрого закрытия или открытия задвижки, внезапной остановки насосов или турбин, аварии на трубопроводе (разрыв, нарушение стыка) и других причин.
Повышение или понижение давления в трубопроводе при гидравлическом ударе объясняется инерцией массы жидкости, движущейся в нем.
Этот вид неустановившегося движения жидкости в трубах часто встречается в практике эксплуатации трубопроводов и весьма важен для специалистов, работающих в области монтажа и эксплуатации санитарно-технических устройств.
Впервые гидравлический удар в трубах был изучен Н.Е. Жуковким, который в 1898 г. дал теоретическое обоснование этого явления и предложил метод его расчета.
Рассмотрим упрощенную модель гидравлического удара. Пусть жидкость вытекает из резервуара, размеры которого велики и уровень воды в нем остается постоянным. Режим движения жидкости стационарный, характеристики движения зависят только от продольной координаты. В момент времени затвор мгновенно закрылся, частицы жидкости, соприкасающиеся c затвором мгновенно остановятся, их скорость движении будет погашена, кинетическая энергия потока пойдет на сжатие жидкости и расширение стенок трубы. Вследствие сжатия жидкости давление в ней увеличивается. Таким образом, непосредственно у крана возникнет ударная волна, На остановившиеся частицы жидкости у крана набегают другие, соседние с ними частицы и тоже теряют свою скорость, в результате чего сечение передвигается по трубопроводу от крана к резервуару. Когда ударная волна достигнет резервуара, вся жидкость в трубе от резервуара до крана будет остановлена и сжата, т.е. во всей трубе скорость равна нулю, а давление максимально.
Как только ударная волна дойдет до резервуара, давление жидкости во всей трубе будет больше давления в резервуаре, поэтому в следующий момент времени жидкость станет поступать из трубы в резервуар. После прихода ударной волны к резервуару вновь начнется движение жидкости к крану, так будет продолжаться до тех пор, пока колебания не затухнут вследствие потерь энергии на трение и деформацию стенки трубы.
Максимальное давление, возникающее в результате гидравлического удара, рассчитывается по формуле
, (10.9)
где- скорость распространения звука в воде, , зависящая от модуля упругости жидкости и стенок трубопровода.
Если стенки трубы упругие, а модуль упругости жидкости составит , то при температуре воды 10 скорость звука в жидкости принимается . Наблюдаемые скорости ударной волны могут быть значительно ниже, что связано с наличием нерастворенного воздуха, и твердых частиц, которые изменяют модуль упругости жидкости.
Процесс гидравлического удара зависит от того, как быстро закрывается или открывается запорное устройство, при медленном закрытии задвижки, давление можно значительно снизить.
Дата добавления: 2016-05-26; просмотров: 7944;