Однородные уравнения


 

Функция f(x, y) называется однородной n – го измерения относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество:

 

Пример. Является ли однородной функция

 

Таким образом, функция f(x, y) является однородной 3- го порядка.

 

Дифференциальное уравнение вида называется однородным, если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.

Любое уравнение вида является однородным, если функции P(x, y) и Q(x, y) – однородные функции одинакового измерения.

 

Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.

 

Рассмотрим однородное уравнение

Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:

Т.к. параметр t вообще говоря произвольный, предположим, что . Получаем:

Правая часть полученного равенства зависит фактически только от одного аргумента , т.е.

Исходное дифференциальное уравнение таким образом можно записать в виде:

Далее заменяем y = ux, .

 

таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.

 

Далее, заменив вспомогательную функцию u на ее выражение через х и у и, найдя интегралы, получим общее решение однородного дифференциального уравнения.

 

Пример. Решить уравнение .

Введем вспомогательную функцию u.

.

Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее .

Подставляем в исходное уравнение:

Разделяем переменные:

Интегрируя, получаем:

Переходя от вспомогательной функции обратно к функции у, получаем общее решение:

 

Линейные уравнения

 

Дифференциальное уравнение называется линейным относительно неизвестной функции и ее производной, если оно может быть записано в виде:

при этом, если правая часть Q(x) равна нулю, то такое уравнение называется линейным однороднымдифференциальным уравнением, если правая часть Q(x) не равна нулю, то такое уравнение называется линейным неоднороднымдифференциальным уравнением.

P(x) и Q(x)- функции непрерывные на некотором промежутке a < x < b.

 



Дата добавления: 2020-06-09; просмотров: 410;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.