Комплексные числа и действия над ними.


 

Система действительных чисел является неполной, так как не содержит корни некоторых многочленов, например . Если квадратичное уравнение имеет отрицательный дискриминант, то есть , то на действительной оси нет ни одного корня. Однако существует система условных, обобщённых чисел, где и такие уравнения тоже имеют решения. Они называются комплексными числами и геометрически соответствуют точкам на плоскости, а известная ранее действительная ось - это горизонтальная ось Ох в данной плоскости. Введено абстрактное понятие «мнимая единица» обозначающая «квадратный корень из минус 1». При этом получается .

Геометрическая интерпретация. На плоскости, горизонтальная ось отождествляется со множеством действительных чисел, а мнимая ось, содержащая , перпендикулярна оси действительных чисел.

 

.

Комплексные числа - ещё более абстрактное обобщение. Оно полезно при решении различных физических задач. Плоскость комплексных чисел есть расширение множества действительных чисел. Каждой точке на плоскости с координатами можно поставить в соответствие комплексное число, состоящее из действительной и мнимой части: . Проекция на действительную и мнимую ось называются действительной частью и мнимой частью комплексного числа. , .

Если , то число это обычное действительное число.

Сложение и вычитание комплексных чисел определяется покоординатно, как для обычных векторов в плоскости.

= .

Для вычитания аналогично: = .

Умножение.

= , учитывая тот факт, что ,

получаем = .

Таким образом, после раскрытия скобок, надо просто учесть и привести подобные.

Пример. = = .

 

Определение. число называется сопряжённым к .

Умножим два взаимно сопряжённых комплексных числа:

= = , получилось действительное число. Мы заметили, что при умножении на сопряжённое мнимая часть станет 0. Этот факт можно использовать для процедуры деления. Если домножить на сопряжённое в знаменателе, то там получится действительное число, и это даст возможность разбить на сумму двух дробей. При этом, конечно, в числителе тоже домножаем на сопряжённое к знаменателю, чтобы дробь не изменилась.

= = =

Пример. Вычислить .

Решение. = = = = =

 



Дата добавления: 2020-03-17; просмотров: 531;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.