Аппроксимация на скользящем интервале.


При сплайн интерполяции ось Х разбивается на участки и проводится кусочная интерполяция. Так же можно поступать и при апроксимации, имея на каждом участке свой эталон, например, полином а+бХ+сХ2+... и оптимальным образом находить а,б,с, считая их оценками а^ б^ с^. Для нахождения оценок используем критерий минимума квадрата отклонения. В таблице 3 приведены формулы оценок а^,b^,c^.

 

Таблица 3

Аппроксимирующий полином Оценки коэффициентов полинома Остаточный квадрат  
У=а  
У=а+бх ;  
у=а+бх+сх2  
         

Формулы таблицы приведены в центрированном виде, т.е. отсчет i идет от средней точки i=0 в плюс и минус i до значения N/2. Рассмотрение формул упрощается, если помнить, что коэффициенты типа и являются константами.

Если выделенный интервал перемещать по массиву исходных точек, то получаем эффект усредения на "скользящем" интервале. Нетрудно показать, что для случая апроксимирующего полинома Y=a+bX результат совпадает с эффектом пропускания массива сигнала черех фильтр с прямоугольным откликрм, база этого отклика равна величине скользящего интервала.



Дата добавления: 2020-02-05; просмотров: 621;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.