Геометрическая интерпретация корреляции
Если случайная величина ξ имеет математическое ожидание, то ее можно центрировать. Случайная величина ξ0= ξ – mξ называется центрированной, она имеет нулевое математическое ожидание.
Рассмотрим множество всех центрированных случайных величин ξ0( ), определенных на одном и том же пространстве элементарных событий и имеющих конечные дисперсии Dξ<∞. Можно убедиться, что это множество случайных величин линейное пространство с операциями сложения и умножения на число, понимаемыми в обычном смысле. Поэтому каждый элемент этого пространства будем называть вектором.
Скалярным произведением двух векторов ξ и η назовем число
(ξ,η)=M[ξη]=Kξη. (1)
(Убедиться самостоятельно, что (1) удовлетворяет всем аксиомам скалярного произведения, см. §17 ч.1, гл.1).
Таким образом, скалярное произведение в данном евклидовом пространстве совпадает с корреляционным моментом Kξη. Поскольку квадрат нормы (длины) вектора ξ в евклидовом пространстве определяется как то он совпадает с дисперсией, Таким образом, норма (длина) вектора ξ есть среднее квадратичное отклонение случайной величины ξ. Коэффициент корреляции случайных величин ξ и η дается формулой:
(2)
Формула (2) определяет косинус угла между вектором ξ и η, т.е. rξη=cos(ξ,^ η). Отсюда ясно, что некоррелированные величины ξ и η ортогональны. Если rξη= ±1, то векторы коллинеарны, линейно зависимые, т.е. η=aξ, где a – некоторый коэффициент.
Запишем неравенство Коши-Буняковского:
(3)
Если (3) переписать иначе: или , то получим доказательство утверждения, что модуль коэффициента корреляции не превышает единицы.
Понятие регрессии
Рассмотрим двумерную случайную величину (ξ,η). Пусть, например, ξ - рост человека, а η - его вес. Ясно, что между весом и ростом существует зависимость, но эта зависимость вероятностная, ее нельзя записать в виде функции. Однако зависимость усредненных величин можно записать в виде функции. Если плотность f(x,y) непрерывной случайной величины известна, то можно найти условные плотности f1(x/y), f2(y/x) и условные математические ожидания
(1)
(2)
В нашем примере М[hïx] -это средний вес людей, рост которых одинаковый, x=x; а M[xïy] - это средний рост людей одинакового веса, h=y.
Формулы (1) и (2) дают функциональную зависимость условных математических ожиданий одной случайной величины от возможных значений другой. Функция y=g(x) называется регрессией величины h на x, а функция x=q(y) - регрессией величины x на h. Графики функций g(x) и q(y) называются кривыми регрессии.
Аналогично можно найти и другие условные числовые характеристики, например, условную дисперсию
(3)
Условная дисперсия D[h/x] определяет рассеяние случайной величины h/x относительно регрессии g(x). Т.к. эта дисперсия является функцией возможных значений случайной величины x (D[h/x]=j(x)), т.е. величиной случайной, то ее усредняют, находят ее математическое ожидание. В результате усреднения получим:
(4)
Здесь f1(x) - плотность распределения случайной величины x. С учетом того, что f1(x)f2(y/x)=f(x,y), формула (4) принимает вид:
(5)
Как видно из (5), d - это безусловная дисперсия случайной величины h относительно своего центра распределения g(x). Известно, что дисперсия(рассеяние) относительно центра распределения минимальная. Отсюда вывод: если регрессию g(x) взять в качестве оценки зависимости h от x (h≈g(x)), то это будет наилучшая оценка этой зависимости в смысле минимума средней квадратичной погрешности.
Если случайная величина (x,h) дискретная с конечным числом возможных значений, то условные математические ожидания вычисляются по формулам:
(6)
(7)
Пример 1. Найти условные математические ожидания M[ξ/y1] и M[ξ/y2] случайной дискретной величины (x,h) примера 1 §14.
Решение: условные законы распределения случайных величин ξ/y1 и ξ/y2 найдены в примере 1 §15. Используя эти законы, по формуле (7) найдем
M[ξ/y1]=1×0,30+3×0,12+4×0,5+8×0,08=3,3,
M[ξ/y2]=1×0,6+3×0,2+4×0,06+8×0,14=2,56.
Пример 2. Случайная величина (x,h) задана своей плотностью распределения
Найти регрессии h на x и x на h.
Решение. Условные плотности f2(y/x) и f1(x/y) найдены в примере 2 §15. Используя их, по формулам (1) и (2) найдем
Итак, y=g(x)= -x/3 - это регрессия h на x.
Аналогично
Таким образом, x=q(y)=2-3y/4 - регрессия x на h.
Как видно, обе регрессии линейные (см. рис. 20). Можно доказать, что если закон распределения случайной величины (x,h) нормальный, то регрессии x на h и h на x
будут линейными, а прямые регрессии проходят через центр симметрии (mξ,mη).
Пример 3. Найти регрессии, если случайная величина (x,h) задана своей плотностью распределения
Решение. Найдем сначала плотности распределения компонент ξ и η вектора (ξ,η):
Найдем теперь условные плотности распределения:
Заметим, что данная и все найденные плотности распределения отличны от нуля только в первом квадранте.
|
|
|
|
|
|
Итак, y=g(x)=1+1/(1+x) и x=q(y)=1+1/(1+y) - регрессии соответственно h на x и x на h. Кривые регрессии изображены на рисунке 21.
Дата добавления: 2020-02-05; просмотров: 734;