Теорема Пуассона. Локальная и интегральная теоремы Муавра-Лапласа

Теорема 11.1. (Пуассона) Пусть производится n независимых испытаний, в каждом из которых событие А наступает с вероятностью р. Тогда, если число испытаний неограниченно возрастает, а p→0, причём n∙p=a – величина постоянная, то Pn(k) .

По формуле Бернулли вероятность того, что событие появится ровно k раз в n независимых испытаниях

Pn(k)= pkqn-k= pk(1 - p)n-k.

Отсюда

Pn(k)= pk(1 - p)n-k= pk(1 - p)n-k.

По условию a=n∙p p= , подставляя, получим:

Pn(k)= =

= =

= .

Переходя к пределу при n→∞

= = [ т.к. ].

Замечание 11.2. Теоремой Пуассона удобно пользоваться, когда p→0, причём a=n∙p 10.Существуют специальные таблицы, в которых приведены значения вероятностей для различных параметров a и k.

Формула Бернулли удобна, когда значение n не очень велико. В противном случае используют приближенные формулы из теорем Муавра-Лапласа.

Теорема 11.3. (локальная теорема Муавра-Лапласа) Если вероятность появления события А в каждом отдельном испытании постоянна и отлична от 0 и 1, т.е.0< p <1, то вероятность того, что событие A появится ровно k раз в n независимых испытаниях

Pn(k) , где – малая функция Лапласа, , q=1-p.

Имеются специальные таблицы значений функции . Нужно учитывать, что функция – чётная, т.е. = .

Теорема 11.4.(интегральная теорема Муавра-Лапласа) Если вероятность появления события А в каждом отдельном испытании постоянна и отлична от отлична от 0 и 1, т.е. 0< p <1, то вероятность того, что событие А появится от k1 до k2 раз в n независимых испытаниях, определятся выражением:

Pn(k1,k2) , где – функция Лапласа, , , q=1-p.

Функция Лапласа – нечётная, т.е. . Значения находят по таблице.

Пример 11.5. Пусть вероятность события А в каждом отдельном испытании p=0,8. Найти вероятность того, что событие А появится 75 раз в 100 независимых испытаниях.

По локальной теореме Муавра-Лапласа х = = = –1,25. Значение (–1,25)= (1,25)=0,1826 находится по таблице.

Тогда вероятность

P100(75) *0,1826 0,04565.

Пример 11.6. Вероятность Р(А) появления события А в одном испытании равна 0,8. Найти вероятность того, что событие А появится более 69 раз в 100 независимых испытаниях.

n=100, p=0,8, q=0,2, k1=70, k1=100.

По интегральной теореме Муавра-Лапласа = = = –1,25, = = = 5. По таблице (-2,5)= - (2,5)= -0,4938, (5)=0,5, P100(70,100) (5) - (-2,5)=0,5+0,4938=0,9938

Случайные величины

Определение 12.1. Случайной величиной Хназывается функция Х(ω), отображающая пространство элементарных исходов Ω во множество действительных чисел . Т.о. Х(ω): Ω→ .

Пример 12.2. Дважды подбрасывается монета. Рассмотрим случайную величину Х – число выпадений герба, определённую на пространстве элементарных исходов Ω={(г,г),(г,p),(p,г),(p,p)}. Множество возможных значений случайной величины Х-{0,1,2}. Составим таблицу

ω (г,г) (г,p) (p,г) (p,p)
Х(ω)

 

Одной из важнейших характеристик случайной величины является её функция распределения.

Определение 12.3. Функцией распределения случайной величины Хназывается функция F(x)=FX(x) действительной переменной х, определяющая вероятность того, что случайная величина X примет в результате эксперимента значение, меньшее некоторого фиксированного числа х

F(x)=P{X< x}=P{X (-∞; x)}.

Замечание 12.4.Если рассматривать случайную величину Х как случайную точку на оси Ox, то функция распределения F(x) с геометрической точки зрения – это вероятность того, что случайная точка Х в результате реализации эксперимента попадёт левее точки х.

Свойства функции распределения

Свойство 12.5.Функция распределения F(x) – неубывающая функция, т.е.для таких, что выполняется условие F(x) F(x).

Поскольку , то события { }={ }+{ }, по определению функции распределения F( )=F( )+P{ }.

Т.к. P{ } 0, то F( )>F( ).

Свойство 12.6. Для таких, что справедливо равенство P{ }= F( )–F( ).

Замечание 12.7. Если функция распределения F(x) – непрерывная, то свойство 12.6 выполняется и при замене знаков и < на < и .

Свойство 12.8. F(x)=0; F(x)=1.

F(-∞)=P{X<-∞}=P(Ø)=0, F(+)=P{X<+}=P(Ω)=1.

Свойство 12.9. Функция распределения F(x) непрерывна слева ( F(x)=F( )).

Свойство 12.10. P{X x}=1-F(x).

{X<+∞}={X<x}+{X x}, по свойству вероятности P{X<+∞}=P{X<x}+P{X x};

P(Ω)=1= F(x)+ P{X x}, откуда P{X x}=1- F(x).






Дата добавления: 2016-06-15; просмотров: 2046; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.037 сек.