Случайные процессы и их характеристики
Прежде чем дать определение случайного процесса напомним основные понятия из теории случайных величин. Как известно, случайной величиной называется величина, которая в результате опыта может принять то или иное значение, заранее неизвестное. Различают дискретные и непрерывные случайные величины. Основной характеристикой случайной величины является закон распределения, который может быть задан в виде графика или в аналитической форме. При интегральном законе распределения функция распределения , где – вероятность того, что текущее значение случайной величины меньше некоторого значения . При дифференциальном законе распределения используют плотность вероятности . Численными характеристиками случайных величин являются так называемые моменты, из которых наиболее употребительны момент первого порядка – среднее значение (математическое ожидание) случайной величины и центральный момент второго порядка – дисперсия. В случае, если имеется несколько случайных величин (система случайных величин), вводится понятие корреляционного момента.
Обобщением понятия случайной величины является понятие случайной функции, т.е. функции, которая в результате опыта может принять тот или иной вид, неизвестный заранее. Если аргументом функции является время t, то её называют случайным или стохастическим процессом.
Конкретный вид случайного процесса, полученный в результате опыта, называется реализацией случайного процесса и является обычной неслучайной (детерминированной) функцией. С другой стороны в фиксированный момент времени имеем так называемое сечение случайного процесса в виде случайной величины.
Для описания случайных процессов обобщаются естественным образом понятия теории случайных величин. Для некоторого фиксированного момента времени , случайный процесс превращается в случайную величину , для которой можно ввести функцию , называемую одномерным законом распределения случайного процесса . Одномерный закон распределения не является исчерпывающей характеристикой случайного процесса. Он, например, не характеризует корреляцию (связь) между отдельными сечениями случайного процесса. Если взять два разных момента времени и , можно ввести двумерный закон распределения и т.д. В пределах нашего дальнейшего рассмотрения будем ограничиваться в основном одномерным и двумерным законами.
Рассмотрим простейшие характеристики случайного процесса, аналогичные числовым характеристикам случайной величины. Математическое ожидание или среднее по множеству
(3.1)
и дисперсию
(3.2)
Математическое ожидание – это некоторая средняя кривая, вокруг которой группируются отдельные реализации случайного процесса, а дисперсия характеризует в каждый момент времени разброс возможных реализаций. Иногда, используется среднеквадратичное отклонение .
Для характеристики внутренней структуры случайного процесса вводится понятие корреляционной (автокорреляционной) функции
(3.3)
Наряду с математическим ожиданием (среднее по множеству) (3.1) вводится ещё одна характеристика случайного процесса – среднее значение случайного процесса для отдельной реализации (среднее по времени)
(3.4)
Для двух случайных процессов можно также ввести понятие взаимной корреляционной функции по аналогии с (3.3).
Одним из частных случаев случайного процесса, находящих широкое применение на практике, является стационарный случайный процесс – это случайный процесс, вероятностные характеристики, которого не зависят от времени. Итак, для стационарного случайного процесса , , а корреляционная функция зависит от разности , т.е. является функцией одного аргумента .
Стационарный случайный процесс в какой-то мере аналогичен обычным или установившимся процессам в системах управления.
Стационарные случайные процессы обладают интересным свойством, которое называется эргодической гипотезой. Для стационарного случайного процесса всякое среднее по множеству равно среднему по времени. В частности, например, Это свойство позволяет часто упростить физическое и математическое моделирование систем при случайных воздействиях.
Как известно, при анализе детерминированных сигналов широкое применение находят их спектральные характеристики на базе ряда или интеграла Фурье. Аналогичное понятие можно ввести и для случайных стационарных процессов. Отличие будет заключаться в том, что для случайного процесса амплитуды гармонических составляющих будут случайными, а спектр статического случайного процесса будет описывать распределение дисперсий по различным частотам.
Спектральная плотность стационарного случайного процесса связана с его корреляционной функцией преобразованиями Фурье :
, (3.5)
, (3.6)
где корреляционную функцию будем трактовать как оригинал, а - как изображение.
Существуют таблицы, связывающие оригиналы и изображения . Например, если , то .
Отметим связь спектральной плотности и корреляционной функции с дисперсией D
. (3.7)
В заключение рассмотрим свойства “белого шума”. Под белым шумом понимают случайный процесс, спектральная плотность которого постоянна при всех частотах от до , т.е. (рис.3.1,а).
Рис. 3.1
Корреляционная функция в соответствии с (3.6)
. (3.8)
График приведен на рис. 3.1, б.
Пример 3.1. Для стационарного случайного процесса со свойствами белого шума в ограниченной полосе частот от до (рис. 3.2, а) определить дисперсию и корреляционную функцию.
На основании (3.7) .
Корреляционная функция в силу (3.6) . Её график изображён на рис. 3.2, б.
Рис. 3.2
В приводятся графики зависимостей и для различных реализаций случайных процессов.
Дата добавления: 2022-02-05; просмотров: 298;