III. Биогеохимические циклы элементов и веществ (на примере основных биогенных элементов: углерод, азот, фосфор) и их количественные характеристики.


В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями.

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот.

Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота. Ещё большую роль на биогеохимический круговорот оказывает человек. Но его роль осуществляется в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день.

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород и уменьшалось содержание углекислого газа. Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зелёного пояса». Последнее является результатом уменьшения количества самих зелёных растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных элементов и веществ она не одинакова), но тем не менее не абсолютна, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах - наиболее древних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не должно меняться, а скорее о влиянии человека на скорость и направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры как в сторону увеличения, так и в сторону уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему всё позволено.

Преодоление экологических трудностей связывают с разработкой и введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ.

Теоретически замкнутые циклы превращения вещества возможны. Однако полная и окончательная перестройка индустрии по принципу круговорота вещества в природе не реальна. Хотя бы временное нарушение замкнутости технологического цикла практически неизбежно, например, при создании синтетического материала с новыми, неизвестными природе свойствами. Такое вещество вначале всесторонне апробируется на практике, и только потом могут быть разработаны способы его разложения с целью внедрения составных частей в природные круговороты.

2. Круговорот веществ в биосфере.

Процессы фотосинтеза органического вещества из неорганических компонентов продолжается миллионы лет, и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их круговороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250 млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т органического вещества (в пересчёте на сухой вес).

Различают два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

Малый круговорот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов (как правило животных), которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

3. Круговорот углерода.

Самый интенсивный биогеохимический цикл - круговорот углерода. В природе углерод существует в двух основных формах - в карбонатах (известняках) и углекислом газе. Содержание последнего в 50 раз больше, чем в атмосфере. Углерод участвует в образовании углеводов, жиров, белков и нуклеиновых кислот.

Основная масса аккумулирована в карбонатах на дне океана (1016 т), в кристаллических породах (1016 т), каменном угле и нефти (1016 т) и участвует в большом цикле круговорота.

Звено большого цикла круговорота углерода представляет собой анаэробное дыхание (без доступа кислорода); различные виды анаэробных бактерий преобразуют органические соединения в метан и другие вещества (например, в болотных экосистемах, на свалках отходов).

В малом цикле круговорота участвует углерод, содержащийся в растительных тканях (около 1011 т) и тканях животных (около 109 т).

4. Круговорот азота.

Газообразный азот возникает в результате реакции окисления аммиака, образующегося при извержении вулканов и разложении биологических отходов:

4NH3 + 3O2 2N2 + 6H2O.

Круговорот азота - один из самых сложных, но одновременно самых идеальных круговоротов. Несмотря на то что азот составляет около 80% атмосферного воздуха, в большинстве случаев он не может быть непосредственно использован растениями, т.к. они не усваивают газообразный азот. Вмешательство живых существ в круговорот азота подчинено строгой иерархии: только определённые категории организмов могут оказывать влияние на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в атмосферу в результате работы некоторых бактерий, тогда как другие бактерии - фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его, преобразуя в нитраты. Неорганическим путём нитраты образуются и в атмосфере в результате электрических разрядов во время гроз.

Самые активные потребители азота - бактерии на корневой системе растений семейства бобовых. Каждому виду этих растений присущи свои особые бактерии, которые превращают азот в нитраты. В процессе биологического цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее образуются отходы в виде погибших организмов, являющихся объектами жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так возникает новый цикл круговорота. Существуют организмы, способные превращать аммиак в нитриты, нитраты и в газообразный азот. Биологическая активность организмов дополняется промышленными способами получения азотосодержащих органических и неорганических веществ, многие из которых применяются в качестве удобрений для повышения продуктивности и роста растений.

Антропогенное влияние на круговорот азота определяется следующими процессами:

- сжигание топлива приводит к образованию оксида азота, затем способствуя выпадению кислотных дождей;

- в результате воздействия некоторых бактерий на удобрения и отходы животноводства образуется закись азота - один из компонентов, создающих парниковый эффект;

- добыча полезных ископаемых, содержащих нитрат-ионы и ионы аммония, для производства минеральных удобрений;

- при сборе урожая из почвы выносятся нитрат-ионы и ионы аммония;

- стоки с полей, ферм и из канализаций увеличивают количество нитрат-ионов и ионов аммония в водных экосистемах, что ускоряет рост водорослей и других растений; при разложении последних расходуется кислород, что в конечном счёте приводит к гибели рыб.

5. Круговорот фосфора.

Фосфор - один из основных компонентов (главным образом в виде и ) живого вещества и входит в состав нуклеиновых кислот (ДНК и РНК), клеточных мембран, аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ), жиров, костей и зубов. Круговорот фосфора, как и других биогенных элементов, совершается по большому и малому циклам.

Запасы фосфора, доступные живым существам, полностью сосредоточены в литосфере. Основные источники неорганического фосфора - изверженные или осадочные породы. В земной коре содержание фосфора не превышает 1%, что лимитирует продуктивность экосистем. Из пород земной коры неорганический фосфор вовлекается в циркуляцию континентальными водами. Он поглощается растениями, которые при его участии синтезируют различные органические соединения и таким образом включаются в трофические цепи. Затем органические фосфаты вместе с трупами, отходами и выделениями живых существ возвращаются в землю, где снова подвергаются воздействию микроорганизмов и превращаются в минеральные формы, употребляемые зелёными растениями.

В наземных системах круговорот фосфора проходит в оптимальных естественных условиях с минимумом потерь. В океане дело обстоит иначе. Это связано с постоянным оседанием (седиментацией) органических веществ. Осевший на небольшой глубине органический фосфор возвращается в круговорот. Фосфаты, отложенные на больших морских глубинах не участвуют в малом круговороте. Однако тектонические движения способствуют подъёму осадочных пород к поверхности.

Рассматривая круговорот фосфора в масштабе биосферы за сравнительно короткий период, можно сделать вывод, что он полностью не замкнут. Запасы фосфора на земле малы. Поэтому считают, что фосфор - основной фактор, лимитирующий рост первичной продукции биосферы. Полагают даже, что фосфор - главный регулятор всех других биогеохимических циклов, это - наиболее слабое звено в жизненной цепи, которая обеспечивает существование человека.

Антропогенное влияние на круговорот фосфора состоит в следующем:

- добыча больших количеств фосфатных руд для минеральных удобрений и моющих средств приводит к уменьшению количества фосфора в биотическом круговороте;

- стоки с поле, ферм и коммунальные отходы приводят к увеличению фосфат-ионов в водоёмах, к резкому росту водных растений и нарушению равновесия в водных экосистемах.

 

 

IV. Антропогенное воздействие на окружающую среду.

 

Под антропогенными воздействиями понимают деятельность, связанную с реализацией экономических, военных, рекреационных, культурных и других интересов человека, вносящую физические, химические, биологические и другие изменения в окружающую природную среду.

Известный эколог Б. Коммонер (1974) выделял пять, по его мнению, основных видов вмешательства человека в экологические процессы:

— упрощение экосистемы и разрыв биологических циклов;

— концентрация рассеянной энергии в виде теплового загрязнения;

— рост числа ядовитых отходов от химических производств;

— введение в экосистему новых видов;

— появление генетических изменений в организмах растений и животных.

Подавляющая часть антропогенных воздействий носит целенаправленный характер, т. е. осуществляется человеком сознательно во имя достижения конкретных целей. Существуют и антропогенные воздействия стихийные, непроизвольные, имеющие характер последействия (Котлов, 1978). Например, к этой категории воздействий относятся процессы подтопления территории, возникающие после ее застройки.

Нарушения основных систем жизнеобеспечения биосферы связаны в первую очередь с целенаправленными антропогенными воздействиями. По своей природе, глубине и площади распространения, времени действия и характеру приложения они могут быть различными.

Анализ экологических последствий антропогенных воздействий позволяет разделить все их виды на положительные и отрицательные (негативные). К положительным воздействиям человека на биосферу можно отнести воспроизводство природных ресурсов, восстановление запасов подземных вод, полезащитное лесоразведение, рекультивацию земель на месте разработок полезных ископаемых и некоторые другие мероприятия.

Отрицательное (негативное) воздействие человека на биосферу проявляется в самых разнообразных и масштабных акциях: вырубке леса на больших площадях, истощении запасов пресных подземных вод, засолении и опустынивании земель, резком сокращении численности, а также исчезновении видов животных и растений, и т. д.

Главнейшим и наиболее распространенным видом отрицательного воздействия человека на биосферу является загрязнение. Наиболее развернутую характеристику этого понятия приводит известный французский ученый Ф. Рамад (1981): «Загрязнение есть неблагоприятное изменение окружающей среды, которое целиком или частично является результатом человеческой деятельности, прямо или косвенно меняет распределение приходящей энергии, уровни радиации, физико-химические свойства окружающей среды и условия существования живых существ. Эти изменения могут влиять на человека прямо или через сельскохозяйственную продукцию, через воду или другие биологические продукты (вещества)».

По объектам загрязнения различают загрязнение поверхностных и подземных вод, загрязнение атмосферного воздуха, загрязнение почв и т. д. В последние годы актуальными стали и проблемы, связанные с загрязнением околоземного космического пространства.

По видам загрязнений выделяют химическое, физическое и биологическое загрязнение (по Н. Ф. Реймерсу, 1990; с изменениями). По своим масштабам и распространению загрязнение может быть местным, региональным и глобальным.

- ингредиентное (минеральное и органическое) загрязнение как совокупность веществ, чуждых естественным биогеоценозам (например, бытовые стоки, ядохимикаты, продукты сгорания и т. д);

- параметрическое загрязнение, связанное с изменениями качественных параметров окружающей среды (тепловое, шумовое, радиационное, электромагнитное);

- биоценотическое загрязнение, вызывающее нарушение в составе и структуре популяций живых организмов (перепромысел, направленная интродукция и акклиматизация видов и т. д.);

- стациально-деструкционное загрязнение (стация — место обитания популяции, деструкция — разрушение), связанное с нарушением и преобразованием ландшафтов и экосистем в процессе природопользования (зарегулирование водотоков, урбанизация, вырубка лесных насаждений и пр.).

Без всякого преувеличения можно отметить, что воздействие человека на биосферу в целом и на отдельные ее компоненты (атмосферу, гидросферу, литосферу и биотические сообщества) достигло к настоящему времени беспрецедентных размеров. Современное состояние планеты Земля оценивается как глобальный экологический кризис. Особенно возросли темпы роста ингредиентных и параметрических загрязнителей, причем не только в количественном, но и в качественном отношении. Негативные тенденции этих воздействий на человека и биоту носят не только выраженный локальный, но и глобальный характер.

Лекция 2



Дата добавления: 2020-06-09; просмотров: 918;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.016 сек.