Средняя квадратическая ошибка функций


Измеренных величин

В тех случаях, когда используются косвенные методы измерений, ошибка результата зависит как от ошибок измеренных величин, так и от действий (функций), с помощью которых вычислен искомый результат. Поэтому определение ошибок функций измеренных величин mf имеет большое практическое значение. Пусть имеем в общем виде функцию от многих независимых величин:

 

Z = f(l1, l2, ….ln).

С учетом ошибок измерений величин l можно записать:

 

Z+ ΔZ= f(l1+Δl1, l2+Δl2,…. ln+Δln).

 

Поскольку Δl1,Δl2,…Δln, то функцию можно разложить в ряд Тейлора, ограничиваясь членами первого порядка. При разложении в ряд возникают частные производные, поскольку в уравнении имеются несколько переменных аргументов. Не вдаваясь в детализацию вывода, запишем итоговую формулу для определения квадрата средней квадратической ошибки функции нескольких переменных:

Таким образом, квадрат среднеквадратической ошибки функции общего вида равен сумме квадратов произведений частных производных по каждому аргументу на среднеквадратическую ошибку соответствующего аргумента.

В частности для функции в виде суммы (разности) аргументов вида:

Z = X ± Y ± T ± U ± ... ±V,

будем иметь:

Для функции вида Z = kX, соответственно или .

 



Дата добавления: 2022-02-05; просмотров: 279;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.