Координаты точки, радиус- вектор точки, произвольные вектора. Длина вектора.


Возьмем в пространстве произвольную точку М(х, у, z). Первая координата х – абсцисса ‒ это проекция т. М на ось ОХ. Вторая у – ордината – это проекция т. М на ось ОУ. Третья z – аппликата – на ось OZ.

М

 

α
N

 

 


Проекция т. М на α

 

 

 

Чтобы найти проекцию точки на прямую, нужно через точку провести плоскость перпендикулярно этой прямой.

p
х
z
у
О
М (х, у, z)

Определение: Вектор, соединяющий начало координат т. О с произвольной точкой пространства называется радиус- вектор этой точки.

Радиус- вектор т. М – ОМ.

Найдем координаты радиус-вектора ОМ:

ОА= xi, ОВ= yj, ОС= zk.

OM= OP+ PM= OA+ OB+ OC= xi+ yj+ zk= (x, y, z).

Вывод: координаты радиус-вектора точки совпадают с координатами самой точки ОМ= (x, y, z).

Вектор ОМ является диагональю параллелепипеда, по свойству диагоналей d2= a2+ b2+ c2 . Отсюда следует, что │ОМ│2= x2+ y2+ z2. Извлекая, квадратный корень получаем длину .

Возьмем две произвольные точки т. А(x1, y1, z1) и т. В (x2, y2, z2). Соединим АВ.

B
А
z
х
y
O

Вспомогательные векторы: ОА= (x1, y1, z1), ОВ= (x2, y2, z2).

АВ= ОВ - ОА= (x2, y2, z2)- (x1, y1, z1)= (x2- x1, , y2- y1, z2- z1).

Вывод: чтобы найти координаты вектора нужно из координат конца вектора вычесть соответствующие координаты начала вектора.

АВ= (x2- x1, , y2- y1, z2- z1).

Пример. Даны 3 точки т. А(2,-1,3), т. В(4,0,1), т. С(-1,2,1). Найти АВ и его длину │АВ│, m= AB- 2BC.

 

Проекция вектора на ось.

Определение: Проекцией вектора на ось называется число, модуль которого равен проекции на эту ось отрезка, задающего вектор, причем число берется со знаком «+», если координата конца вектора больше координаты начала вектора, и со знаком «-», если координата начала больше координаты конца.

Через т. А и т. В проведем плоскости перпендикулярныеоси l, и найдем точки пересечения плоскости с осью.

Перенесем вектор АВ в точку А1. А1В1(проекция)=АВ. Из прямоугольного треугольника следует, что проекция АВ на ось l будет равна:

│АВ│· cos φ= прl AB.

прl AB=│АВ│· cos φ, где φ - это угол между вектором и осью.

Возможны 3 случая:

1) Ðφ- острый, прl AB> 0, т.к. cos φ> 0.

l
φ
В
А
 
 

2) Ðφ- тупой, прl AB< 0, т.к. cos φ< 0.

A
B
φ
l

3) Ðφ= 90°, прl AB= 0, т.к. cos φ= 0.

A
B
φ
l

Теоремы о проекциях.

Теорема 1. прl(а + b)= прl a + прl b.

 

Теорема 2. прl (λа)= λ прl а.

 



Дата добавления: 2016-06-05; просмотров: 5709;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.