Обратная задача кинематики


В этом разделе рассматривается обратная задача кинематики шестизвенного манипулятора. Необходимо по заданной матрице 0T6 положения и ориентации схвата шестизвенного манипулятора и известным параметрам его звеньев и сочленений определить присоединенные параметры манипулятора, обеспечивающие заданное положение схвата.

Для того, чтобы решение обратной задачи кинематики было получено в явном виде, необходимо, чтобы конструкция робота удовлетворяла одному из двух условий:

1. Оси трех смежных сочленений пересекаются в одной точке.

2. Оси трех смежных сочленений параллельны между собой.

Из равенства (4-2) следует вид матрицы манипулятора T:

T6= =0A1 1A2 2A3 3A4 4A5 5A6. (6-7)

Из равенства (4-7) видно, что матрица T является функцией синусов и косинусов углов Приравнивая элементы матриц в левой и правой частях матричного уравнения (4-7), получаем, например, для манипулятора Пума двенадцать уравнений (4-3) – (4-6) относительно шести неизвестных (присоединенных углов). Поскольку число уравнений превышает число переменных, можно сразу сделать вывод о том, что решение обратной задачи кинематики для манипулятора Пума не единственно. Мы рассмотрим два метода решения обратной задачи кинематики: метод обратных преобразований в эйлеровых координатах и геометрический подход, выгодно отличающийся наглядностью.



Дата добавления: 2021-11-16; просмотров: 632;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.