Определение дискретного преобразования Лапласа.
Дискретное преобразование Лапласа определяется формулой
(11.12)
где - комплексная переменная,
называется изображением,
- решетчатая функция.
Дискретное преобразование Лапласа также называют D - преобразованием и обозначают , т.е.
.
Наряду с D – преобразованием применяется так называемое Z – преобразование.
Z – преобразование определяется формулой (1) в которую вводится новая переменная
.
(11.13)
Z – преобразование обозначают так:
.
Если известно изображение некоторой решетчатой функции, то соответствующее изображение может быть найдено с помощью замены комплексной переменной q по формуле
, тогда
.
Аналогично можно определить изображение по заданной функции
.
Т.о. принципиальной разницы между D – преобразованием и Z – преобразованием не существует. Все основные свойства Z – преобразования могут быть получены из соответствующих свойств D – преобразования.
В выражении (11.12) справа стоит ряд, который сходится абсолютно в каждой точке полуплоскости , сходится равномерно в каждой полуплоскости и
расходится в полуплоскости (рис.11.2).
Величина называется абсциссой абсолютной сходимости D – преобразования (11.12).
Т.о. область сходимости D – преобразования есть полуплоскость, расположенная справа от прямой (рис.11.2).
Если в частности , то ряд (11.12) сходится всюду, если же , то D – преобразования не существует.
Так же можно сказать, что функция является аналитической в полуплоскости .
По аналогии с непрерывным преобразованием Лапласа, будем называть оригиналом решетчатую функцию , которая равна нулю при n<0 и удовлетворяет при условию
где М>0 и некоторые постоянные величины. Величина называется показателем роста решетчатой функции .
Теорема. Для всякого оригинала изображение определено в полуплоскости и является в этой полуплоскости аналитической функцией.
Непосредственно из определения D – преобразования по формуле (1) следует, что функция является периодической вдоль мнимой оси плоскости q с периодом .
Действительно,
где r – любое целое число.
Поэтому достаточно изучить свойства функции в любой полосе шириной . Наиболее удобна для этой цели полоса
. (рис.11.3).
Эту полосу удобно называть основной полосой.
Формула обращения.
Преобразование обратное по отношению к дискретному преобразованию Лапласа определяет решетчатую функцию по заданному изображению и определяется формулой
(11.14)
где С > .
Вычисление оригиналов можно производить и по формуле обращения Z – преобразования, которая может быть получена из формулы (11.14) путем замены переменной .
(11.15)
Интегрирование производится по окружности С радиуса , где С> в положительном направлении. Функция, стоящая под интегралом - аналитическая вне окружности С и на самой окружности. Применяя теорему о вычетах получим:
, (11.16)
где - полюс функции , лежащий внутри окружности С.
Иногда оказывается более удобным определять вычеты, не переходя к Z – преобразованию. Тогда формула (11.16) принимает вид
(11.17)
Пример.
Найти оригинал , соответствующий изображению
.
Решение. Выполним замену переменной
, , где .
Образуем функцию
.
Находим вычет в точке - это двукратный полюс
Таким образом,
.
Свойства дискретного преобразования Лапласа.
Дискретное преобразование Лапласа устанавливает соответствие между решетчатыми функциями – оригиналами и их изображениями . Различным операциям, совершаемыми над решетчатыми функциями, соответствуют при этом определенные операции, совершаемые над их изображениями.
Дата добавления: 2021-11-16; просмотров: 296;