Вычисление оригиналов с помощью вычетов.


Будем предполагать, что функция аналитическая во всей комплексной плоскости p, за исключением, конечного числа особых точек и удовлетворяет условию , а также предполагается аналитичность в бесконечно удаленной точке. Для вычисления поступим следующим образом. Возьмем контур Г, состоящий из дуги BA окружности и отрезка AB (рис.7.2).

 

Радиус R выберем таким большим, чтобы все особые точки попали в область, ограниченную контуром Г, тогда:

Особый интерес представляет собой случай, когда при исчезает.

 

 

Лемма Жордана.

Если на стремится к нулю при равномерно относительно , то для любого

Итак, при и выполнении условия леммы Жордана имеем

откуда по формуле обращения получим:

(7.2)

Формулу (7.2) называют второй теоремой разложения. Она позволяет в самом общем случае найти оригинал по его изображению. Но очень часто F(p) представляет собой дробно-рациональную функцию, что позволяет упростить вычисления оригиналов.

Пусть

,

где А(р) и В(р)- многочлены степени m и n, соответственно, причем m<n.

1.Случай простых полюсов.

Применяя формулу для нахождения вычета относительно простого полюса от функции представимой в виде частного двух выражений, получим:

(7.3)

Здесь простые полюса.

2.Случай кратных полюсов.

Пусть - полюсы кратности и таких различных полюсов будет l, тогда

(7.4)

3.Случай комплексно – сопряженных полюсов:

Пусть имеет простые комплексно – сопряженные корни и . Мы знаем, что комплексно- сопряженные корни появляются парами, а т.к. мы рассматриваем полиномы А(р) и В(р) с действительными коэффициентами, то после подстановки корней получим сопряженные выражения т.е.

Теперь после подстановки корней в (7.3) мы получим, что выражение от пары комплексно- сопряженных корней дают:

.

В результате получим формулу для данного случая

(7.5)

Рассмотрим примеры нахождения оригиналов.

Пример 1. Найти оригинал для изображения

.

Решение.

Пример 2. Найти оригинал для изображения

Решение.

 

Пример 3. Найти оригинал для изображения

Решение. Так как изолированные особые точки и полюса второго порядка являются комплексно сопряженными, то

Пример 4. Найти оригинал, если дано изображение

Решение.

1 способ

Преобразуем , и воспользуемся теоремой интегрирования оригинала:

Так как то

 

 

2 способ

Преобразуем

.

тогда .

3 способ

Так как имеет две изолированные особые точки: - простой полюс и - полюс третьего порядка, то

Найдем:

 

 

4 способ

Так как а и по теореме Бореля

 



Дата добавления: 2021-11-16; просмотров: 300;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.015 сек.