Осаждение под действием электрических сил
Электрическая очистка основана на ионизации молекул газа электрическим разрядом и последующей адсорбции ионизированных молекул на взвешенных частицах твердой или жидкой фазы. Направление вектора скорости заряженных частиц будет определяться их знаком, а скорость движения и, следовательно, кинетическая энергия — напряженностью электрического поля.
Если газ поместить в электрическое поле, образованное двумя электродами, к которым подведен постоянный электрический ток высокого напряжения, то имеющиеся в газе ионы и электроны начнут перемещаться по направлению силовых линий. При повышении разности потенциалов между электродами (напряженности электрического поля) до нескольких десятков тысяч вольт кинетическая энергия ионов и электронов возрастает настолько, что они при своем движении, сталкиваясь с нейтральными газовыми молекулами, будут расщеплять их на положительные ионы и свободные электроны. Вновь образовавшиеся заряды при своем движении также ионизируют газ. В результате образование ионов происходит лавинообразно и газ полностью ионизируется. Такая ионизация называется ударной.
При полной ионизации газа между электродами возникают условия для электрического разряда. С дальнейшим увеличением напряженности электрического поля возможен проскок искр, а затем электрический пробой и короткое замыкание электродов. Чтобы избежать этого, создают неоднородное электрическое поле путем устройства электродов в виде проволоки, натянутой по оси трубы, или проволоки, натянутой между параллельными пластинами. Густота силовых линий и, следовательно, напряженность поля в этих условиях наиболее высока у провода и постепенно убывает по мере приближения к трубе или пластине. Напряженность поля непосредственно у трубы (пластины) является недостаточной для искрообразования и электрического пробоя.
При напряженности поля, достаточной для полной ионизации, между электродами возникает коронный разряд, сопровождающийся голубовато-фиолетовым свечением, образованием «короны» вокруг каждого провода и характерным потрескиванием. Электрод, вокруг которого образуется «корона», носит название коронирующего электрода, а другой, противоположно заряженный электрод, выполненный в виде трубы или пластины называется осадительным электродом. Коронирующие электроды присоединяются к отрицательному полюсу источника тока, а осадительные — к положительному.
При возникновении «короны» образуются ионы обоих знаков и свободные электроны. Под действием электрического поля положительные ионы движутся к коронирующему электроду и нейтрализуются на нем, а отрицательные ионы и свободные электроны перемещаются к осадительному электроду.
Соприкасаясь со встречными пылинками и капельками, находящимися в газе, они сообщают последним свой заряд и увлекают их к осадительному электроду. В результате частицы пыли или тумана оседают на этом электроде. Основная масса взвешенных в газе частиц пыли или тумана приобретает отрицательный заряд вследствие того, что более подвижные отрицательные ионы и электроны проделывают более длинный путь из области «короны» к осадительному электроду, чем положительные ионы. Соответственно больше вероятность их столкновения со взвешенными в газе частицами. Лишь небольшая часть частиц пыли или тумана, которые столкнулись с положительно заряженными ионами в области «короны», оседают на коронирующем электроде. Отрицательно заряженные ионы, частицы пыли или тумана, попадая на осадительный электрод, отдают ему свои заряды, а затем удаляются с электрода.
Степень очистки газа в электрофильтре в значительной степени зависит от проводимости пыли. Если частицы хорошо проводят ток, а силы адгезии (сцепления) невелики, то заряд отдается мгновенно, а сама частица получает заряд электрода. Возникает кулоновая сила отталкивания, и частица вновь может попасть в газовый поток. Это приводит к увеличению уноса пыли из электрофильтра и понижению степени очистки. Если пыль плохо проводит ток, то она прижимается силой поля к электроду и образует на нем плотный слой отрицательно заряженных частиц, который отталкивает приближающиеся частицы того же знака, т. е. противодействует основному электрическому полю. Это явление также значительно снижает эффективность очистки газа.
Для исключения вредного влияния пыли, осевшей на электродах, ее удаляют периодическим встряхиванием электродов или увеличивают проводимость пыли путем увлажнения газа перед входом в электрофильтр водой, не допуская, однако, снижения температуры газа ниже его точки росы.
При очистке газов с высокой концентрацией твердых частиц большая часть ионов осаждается на последних и количество переносимых зарядов существенно уменьшается, а следовательно, снижается сила потребляемого тока, так как скорость взвешенных частиц (0,3—0,6 м/сек) значительно меньше скорости ионов (60—100 м/сек). При падении силы потребляемого тока до нуля степень очистки газа резко ухудшается — происходит полное «запирание короны». В этом случае для борьбы со снижением силы тока уменьшают концентрацию взвешенных частиц в газе (устанавливая перед электрофильтрами дополнительную газоочистительную аппаратуру) или снижают скорость поступающего газа, уменьшая нагрузку электрофильтра.
Электрофильтры работают только на постоянном токе, так как при переменном токе заряженные частицы, испытав ряд импульсов, направляющих их то в одну, то в другую сторону, могут быть вынесены из аппарата ранее, чем они успевают достичь поверхности осадительного электрода.
Скорость движения заряженных частиц пыли или тумана к осадительному электроду при прочих равных условия зависит от их диаметра:
частицы диаметром более 1 мкм
(2.26)
частицы диаметром менее 1 мкм
, (2.27)
где Е – напряженность электрического поля, в/м;
r – радиус частицы, м;
m - вязкость газа, Па×с
Степень очистки газов в электрофильтре рассчитывается по формулам:
для электрофильтра с трубчатыми осадительными электродами
(2.28)
для электрофильтра с пластинчатыми осадительными электродами
, (2.29)
где wг – скорость газа в свободном сечении электрофильтра, м/с;
wч – скорость частиц при движении к электроду, м/с;
L – высота (длина) электрода, м;
R,h – соответственно, радиус трубчатого электрода и расстояние между пластинами пластинчатого электрода, м.
Степень эффективности улавливания взвешенных частиц в электрофильтрах, рассчитанная по теоретическим уравнениям 2.28 и 2.29, несколько отличается от действительной величины эффективности наблюдаемой на практике, что требует уточнения на основе данных о фактической эффективности работы электрофильтров в реальных условиях.
Дата добавления: 2021-11-16; просмотров: 416;