Вычисление площади поверхности с помощью двойного интеграла.


 

Пусть поверхность s, площадь которой надо вычислить, задана уравнением F(x, y, z) = 0 или уравнением z = f(x, y). Введем разбиение s на ячейки Dsk, не имеющие общих внутренних точек, площадью Dvk. Пусть область s и ячейки Dsk проектируются на плоскость OXY в область D и ячейки Ddk площадью Dsk. Отметим на ячейке Ddk точку Mk. В точке Qk (ячейки Dsk), которая проектируется в точку Mk, проведем единичный вектор нормали nk {cosak, cosbk, cosgk} к поверхности s и касательную плоскость. Если приближенно считать равными площадь Dvk ячейки Dsk и площадь ее проекции на касательную плоскость,

то можно считать справедливым соотношение Dvk cosgk = Dsk. Выразим отсюда

Dvk=Dsk/ cosgk. Будем измельчать разбиение при условии max diam Dsk ®0, что для кусочно-гладкой поверхности, не ортогональной плоскости OXY, равносильно max diam Ddk ®0. Вычислим площадь поверхности как двойной интеграл

.

Сюда остается лишь подставить .

Если поверхность s задана уравнением F(x, y, z) = 0, то

Поэтому в этом случае , .

 

 

.

Если поверхность задана уравнением z = f(x, y), то уравнение это можно

свести к уравнению F(x, y, z) = 0 и применить выведенную формулу:

.

Пример. Вычислить площадь поверхности конуса , ограниченной плоскостями

. .

 



Дата добавления: 2017-11-21; просмотров: 1242;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.