Двойной интеграл. Задача об объеме цилиндрического тела.
К определенному интегралу мы пришли от задачи о площади криволинейной трапеции. К двойному интегралу мы приходим, решая задачу об объеме цилиндрического тела.
- Рассмотрим, например, прямой круговой цилиндр с высотой h и радиусом основания R его объем равен
- Объем цилиндра той же высоты, в основании которого лежит эллипс с полуосями равен .
- Объем цилиндра той же высоты, с площадью основания , равен .
Пусть надо вычислить объем цилиндрического тела, в основании которого лежит область с площадью , а высота изменяется от точки к точке так, что конец ее описывает некоторую поверхность ( ). Тогда логично разбить область на области малого размера – организовать разбиение области на области – элементы разбиения. На каждом элементе отметим точку M(x,y) и построим над этим элементом прямой круговой цилиндр, высота которого постоянна для всех точек элемента и равна . Вычислим объем этого элементарного цилиндра. Просуммируем объемы всех элементарных цилиндров. Эта сумма и даст приближенно искомый объем цилиндрического тела тем точнее, чем меньше будут размеры элементов разбиения. Этот алгоритм используем для построения двойного интеграла
Двойной интеграл[1]
.
1. Организуем разбиение области D на элементы – области так, чтобы эти элементы не имели общих внутренних точек и (условие А) 2. Отметим на элементах разбиения «отмеченные точки» Mi и вычислим в них значения функции 3. Построим интегральную сумму , где - площадь 4. Переходя к пределу при условии (условие В), получим двойной интеграл как предел интегральных сумм: |
Теорема существования[2].
Пусть функция непрерывна в замкнутой односвязной области D[3]. Тогда двойной интеграл существует как предел интегральных сумм.
.
Замечание[4]. Предел этот не зависит от
- способа выбора разбиения, лишь бы выполнялось условие А
- выбора «отмеченных точек» на элементах разбиения,
- способа измельчения разбиения, лишь бы выполнялось условие В
Свойства двойного интеграла[5].
1. Линейность
а) свойство суперпозиции .= +
б) свойство однородности.=
Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Они равны интегральным суммам для правых частей равенств, так как число слагаемых конечно. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.
2. Аддитивность.
Если ,то = +
Доказательство. Выберем разбиение области D так, чтобы ни один из элементов разбиения (первоначально и при измельчении разбиения) не содержал одновременно как элементы D1, так и элементы D2. Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.
3. -площадь области D.
4. Если в области D выполнено неравенство , то (неравенство можно интегрировать).
Доказательство. Запишем неравенство для интегральных сумм и перейдем к пределу.
Заметим, что, в частности, возможно
5. Теорема об оценке.
Если существуют константы , что , то
Доказательство. Интегрируя неравенство (свойство 4), получим . По свойству 1 константы можно вынести из-под интегралов. Используя свойство 3, получим искомый результат.
6. Теорема о среднем(значении интеграла).
Существует точка , что .
Доказательство. Так как функция непрерывна на замкнутом ограниченном множестве , то существует ее нижняя грань и верхняя грань . Выполнено неравенство . Деля обе части на , получим . Но число заключено между нижней и верхней гранью функции. Так как функция непрерывна на замкнутом ограниченном множестве , то в некоторой точке функция должна принимать это значение. Следовательно, .
Геометрический смысл теоремы состоит в том, что существует цилиндр постоянной высоты , объем которого равен объему цилиндрического тела
Дата добавления: 2017-11-21; просмотров: 1911;