Двойной интеграл. Задача об объеме цилиндрического тела.
К определенному интегралу мы пришли от задачи о площади криволинейной трапеции. К двойному интегралу мы приходим, решая задачу об объеме цилиндрического тела.
- Рассмотрим, например, прямой круговой цилиндр с высотой h и радиусом основания R его объем равен 
- Объем цилиндра той же высоты, в основании которого лежит эллипс с полуосями
равен
.
- Объем цилиндра той же высоты, с площадью основания
, равен
.
Пусть надо вычислить объем цилиндрического тела, в основании которого лежит область
с площадью
, а высота
изменяется от точки к точке так, что конец ее описывает некоторую поверхность
(
). Тогда логично разбить область
на области малого размера – организовать разбиение области на области – элементы разбиения. На каждом элементе отметим точку M(x,y) и построим над этим элементом прямой круговой цилиндр, высота которого постоянна для всех точек элемента и равна
. Вычислим объем этого элементарного цилиндра. Просуммируем объемы всех элементарных цилиндров. Эта сумма и даст приближенно искомый объем цилиндрического тела тем точнее, чем меньше будут размеры элементов разбиения. Этот алгоритм используем для построения двойного интеграла
Двойной интеграл[1]
.
| 1. Организуем разбиение области D на элементы – области так, чтобы эти элементы не имели общих внутренних точек и (условие А)
2. Отметим на элементах разбиения «отмеченные точки» Mi и вычислим в них значения функции
3. Построим интегральную сумму , где - площадь
4. Переходя к пределу при условии (условие В), получим двойной интеграл как предел интегральных сумм:
|
Теорема существования[2].
Пусть функция
непрерывна в замкнутой односвязной области D[3]. Тогда двойной интеграл существует как предел интегральных сумм.
.
Замечание[4]. Предел этот не зависит от
- способа выбора разбиения, лишь бы выполнялось условие А
- выбора «отмеченных точек» на элементах разбиения,
- способа измельчения разбиения, лишь бы выполнялось условие В
Свойства двойного интеграла[5].
1. Линейность
а) свойство суперпозиции
.=
+ 
б) свойство однородности
.=
Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Они равны интегральным суммам для правых частей равенств, так как число слагаемых конечно. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.
2. Аддитивность.
Если
,то
=
+
Доказательство. Выберем разбиение области D так, чтобы ни один из элементов разбиения (первоначально и при измельчении разбиения) не содержал одновременно как элементы D1, так и элементы D2. Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.
3.
-площадь области D.
4. Если в области D выполнено неравенство
, то
(неравенство можно интегрировать).
Доказательство. Запишем неравенство для интегральных сумм и перейдем к пределу.
Заметим, что, в частности, возможно 
5. Теорема об оценке.
Если существуют константы
, что
, то

Доказательство. Интегрируя неравенство
(свойство 4), получим
. По свойству 1 константы
можно вынести из-под интегралов. Используя свойство 3, получим искомый результат.
6. Теорема о среднем(значении интеграла).
Существует точка
, что
.
Доказательство. Так как функция
непрерывна на замкнутом ограниченном множестве
, то существует ее нижняя грань
и верхняя грань
. Выполнено неравенство
. Деля обе части на
, получим
. Но число
заключено между нижней и верхней гранью функции. Так как функция
непрерывна на замкнутом ограниченном множестве
, то в некоторой точке
функция должна принимать это значение. Следовательно,
.
Геометрический смысл теоремы состоит в том, что существует цилиндр постоянной высоты
, объем которого равен объему цилиндрического тела 
Дата добавления: 2017-11-21; просмотров: 2065;

так, чтобы эти элементы не имели общих внутренних точек и
(условие А)
2. Отметим на элементах разбиения «отмеченные точки» Mi и вычислим в них значения функции
3. Построим интегральную сумму
, где
- площадь
(условие В), получим двойной интеграл как предел интегральных сумм:










