Уравнение прямой в пространстве, проходящей


через две точки.

 

Если на прямой в пространстве отметить две произвольные точки M1(x1, y1, z1) и M2(x2, y2, z2), то координаты этих точек должны удовлетворять полученному выше уравнению прямой:

.

Кроме того, для точки М1 можно записать:

.

Решая совместно эти уравнения, получим:

.

Это уравнение прямой, проходящей через две точки в пространстве.

 

 

Общие уравнения прямой в пространстве.

 

Уравнение прямой может быть рассмотрено как уравнение линии пересечения двух плоскостей.

Как было рассмотрено выше, плоскость в векторной форме может быть задана уравнением:

× + D = 0, где

- нормаль плоскости; - радиус- вектор произвольной точки плоскости.

Пусть в пространстве заданы две плоскости: × + D1 = 0 и × + D2 = 0, векторы нормали имеют координаты: (A1, B1, C1), (A2, B2, C2); (x, y, z).

 

Тогда общие уравнения прямой в векторной форме:

Общие уравнения прямой в координатной форме:

 

Практическая задача часто состоит в приведении уравнений прямых в общем виде к каноническому виду.

Для этого надо найти произвольную точку прямой и числа m, n, p.

 

При этом направляющий вектор прямой может быть найден как векторное произведение векторов нормали к заданным плоскостям.

 

 

Таким образом, угол между плоскостями находится по формуле:

 

Выбор знака косинуса зависит от того, какой угол между плоскостями следует найти – острый, или смежный с ним тупой.

 



Дата добавления: 2017-10-04; просмотров: 1002;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.