Метод простых итераций.
Суть метода простых итераций в принципе совпадает с методом, изложенным для решения систем линейных алгебраических уравнений. Для нелинейного уравнения метод основан на переходе от уравнения
f(x) = 0 (2)
к эквивалентному уравнению x = φ (x). Этот переход можно осуществить разными способами, в зависимости от вида f(x). Например, можно положить
φ (x) = x + bf(x), (3)
где b = const, при этом корни исходного уравнения (2) не изменятся.
Если известно начальное приближение к корню x0, то новое приближение x1 = φ (x0), т.е. общая схема итерационного процесса:
xk+1 = φ (xk). (4)
Наиболее простой критерий окончания процесса .
Критерий сходимости метода простых итераций: если вблизи корня |φ/(x)| < 1, то итерации сходятся. Если указанное условие справедливо для любого x, то итерации сходятся при любом начальном приближении. Исследуем выбор константы b в функции (3) с точки зрения обеспечения максимальной скорости сходимости. В соответствии с критерием сходимости наибольшая скорость сходимости обеспечивается при |φ/(x)| = 0. При этом, исходя из (3),
b = –1/f /(x), и итерационная формула (4) переходит в
,
т.е. в формулу метода Ньютона (1). Таким образом, метод Ньютона является частным случаем метода простых итераций, обеспечивающим самую высокую скорость сходимости из всех возможных вариантов выбора функции φ (x).
Численное решение систем нелинейных уравнений
Постановка задачи.
Требуется решить систему нелинейных уравнений (1). В координатном виде эту задачу можно записать так: , где 1 ≤ k ≤ n.
Убедиться в существовании решения и количестве корней, а также выбрать нулевое приближение в случае системы двух уравнений с двумя неизвестными можно, построив графики функций в удобных координатах. В случае сложных функций можно посмотреть поведение аппроксимирующих их полиномов. Для трех и более неизвестных, а также для комплексных корней, удовлетворительных способов подбора начального приближения нет.
Метод Ньютона.
Обозначим некоторое приближение к корню системы уравнений . Пусть малое . Вблизи каждое уравнение системы можно линеаризовать следующим образом:
, 1 ≤ k ≤ n. (2)
Это можно интерпретировать как первые два члена разложения функции в ряд Тейлора вблизи . В соответствии с (1), приравнивая (2) к нулю, получим:
, 1 ≤ k ≤ n. (3)
Мы получили систему линейных уравнений, неизвестными в которой выступают величины . Решив ее, например, методом Гаусса, мы получим некое новое приближение к , т.е. . Выражение (3) можно представить как обобщение на систему уравнений итерационного метода Ньютона, рассмотренного в предыдущей главе:
, (4)
где в данном случае
– матрица Якоби, которая считается для каждого (s) приближения.
Критерием окончания итерационного процесса является условие (Можем принять под как норму , так и ). Достоинством метода является высокая скорость сходимости. Сходимость метода зависит от выбора начального приближения: если , то итерации сходятся к корню. Недостатком метода является вычислительная сложность: на каждой итерации требуется находить матрицу частных производных и решать систему линейных уравнений. Кроме того, если аналитический вид частных производных неизвестен, их надо считать численными методами.
Блок-схема метода Ньютона для решения систем нелинейных уравнений.
Так как метод Ньютона отличается высокой скоростью сходимости при выполнении условий сходимости, на практике критерием работоспособности метода является число итераций: если оно оказывается большим (для большинства задач >100), то начальное приближение выбрано плохо.
Частным случаем решения (4) методом Ньютона системы из двух нелинейных уравнений
являются следующие легко программируемые формулы итерационного процесса:
, где ,
,
Дата добавления: 2021-09-07; просмотров: 406;