Вторая формула Рунге.


Так как модуль и знак апостериорной погрешности из формулы (4) известны, можно уточнить искомое значение . Это вторая формула Рунге. Однако теперь погрешность wcorr не определена, известно лишь, что она по модулю меньше R0.

Алгоритм Эйткена.

Способ оценки погрешности для случая, когда порядок метода p неизвестен. Более того, алгоритм позволяет опытным путем определить и порядок метода. Для этого в третий раз вычислим значение величины w с шагом k2h:

. (5)

Приравняем правые части выражений (5) и (3): . Отсюда:

. Подставим сюда значение R0 из (4):

. Из этой формулы определяем знаменатель для (4). Кроме того, определяем порядок . Для правильно реализованных алгоритмов методов априорных и апостериорных порядки должны получиться совпадающими. Программная реализация формул Рунге позволяет вычислить определенные интегралы с заданной точностью, когда выбор необходимого числа разбиений интервала интегрирования осуществляется автоматически. Пример – уже рассмотренная ранее формула Ромберга.




Дата добавления: 2021-09-07; просмотров: 347;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.