Метод прямоугольников.
Различают метод левых, правых и средних прямоугольников. Суть метода ясна из рисунка. На каждом шаге интегрирования функция аппроксимируется полиномом нулевой степени – отрезком, параллельным оси абсцисс.
Выведем формулу метода прямоугольников из анализа разложения функции f(x) в ряд Тейлора вблизи некоторой точки x = xi.
…
Рассмотрим диапазон интегрирования от xi до xi + h, где h – шаг интегрирования.
Вычислим …=
= = . Получили формулу правых (или левых) прямоугольников и априорную оценку погрешности r на отдельном шаге интегрирования. Основной критерий, по которому судят о точности алгоритма – степень при величине шага в формуле априорной оценки погрешности.
В случае равного шага h на всем диапазоне интегрирования общая формула имеет вид
.
Здесь n – число разбиений интервала интегрирования, . Для справедливости существования этой оценки необходимо существование непрерывной f’(x).
Метод средних прямоугольников. Здесь на каждом интервале значение функции считается в точке , то есть . Разложение функции в ряд Тейлора показывает, что в случае средних прямоугольников точность метода существенно выше:
.
Метод трапеций.
Аппроксимация в этом методе осуществляется полиномом первой степени. Суть метода ясна из рисунка.
На единичном интервале .
В случае равномерной сетки (h = const)
При этом , а . Погрешность метода трапеций в два раза выше, чем у метода средних прямоугольников! Однако на практике найти среднее значение на элементарном интервале можно только у функций, заданных аналитически (а не таблично), поэтому использовать метод средних прямоугольников удается далеко не всегда. В силу разных знаков погрешности в формулах трапеций и средних прямоугольников истинное значение интеграла обычно лежит между двумя этими оценками.
Дата добавления: 2021-09-07; просмотров: 307;