Контроллер и датчики электронной системы управления двигателем


 

Рисунок 20 – Контроллер ЭСУД ВАЗ-11183

 

Контроллер, изображенный на рисунке 20, прикреплен к корпусу отопителя внизу, под панелью приборов. Контроллер получает информацию от датчиков и управляет исполнительными устройствами, такими как топливные форсунки, катушка зажигания, регулятор холостого хода, нагревательный элемент датчика концентрации кислорода, электромагнитный клапан продувки адсорбера, электровентилятор системы охлаждения и различными реле системы При включении зажигания контроллер включает главное реле, через которое напряжение питания подводится к элементам системы (кроме электробензонасоса, катушки зажигания, электровентилятора, блока управления и сигнализатора состояния иммобилайзера).

При выключении зажигания контроллер задерживает выключение главного реле на время, необходимое для подготовки к следующему включению (для завершения вычислений, установки регулятора холостого хода, управления электровентилятором системы охлаждения).

Контроллер представляет собой мини-компьютер специального назначения Он содержит три вида памяти — оперативное запоминающее устройство (ОЗУ), программируемое постоянное запоминающее устройство (ППЗУ) и электрически перепрограммируемое запоминающее устройство (ЭРПЗУ).

ОЗУ используется микропроцессором для временного хранения текущей информации о работе двигателя (измеряемых параметров) и расчетных данных. Также в ОЗУ записываются коды возникающих неисправностей. Эта память энергозависима, т. е. при прекращении питания (отключении аккумуляторной батареи или отсоединении от контроллера жгута проводов) ее содержимое стирается.

В ППЗУ хранится программа управления, которая содержит последо

вательность рабочих команд (алгоритм) и калибровочные данные (настройки). Таким образом, ППЗУ определяет важнейшие параметры работы двигателя: характер изменения момента и мощности, расход топлива и т. п. ППЗУ энергонезависимо, т. е. его содержимое не изменяется при отключении питания.

ЭРПЗУ используется для хранения идентификаторов контроллера, двигателя и автомобиля (записываются коды иммобилайзера при обучении ключей) и других служебных кодов. Кроме того, в ЭРПЗУ записываются эксплуатационные параметры (общий пробег автомобиля и время работы двигателя, общий расход топлива), а также нарушения режимов работы двигателя и автомобиля (время работы двигателя: с перегревом, на низкооктановом топливе, с превышением максимально допустимых оборотов, неисправными датчиками детонации, концентрации кислорода и скорости). ЭРПЗУ является энергонезависимой памятью и может хранить информацию при отсутствии питания контроллера.

Контроллер также выполняет диагностические функции системы управления двигателем (бортовая система диагностики). Контроллер определяет наличие неисправностей элементов системы управления, включает сигнализатор неисправности в комбинации приборов и сохраняет в своей памяти коды неисправностей. При обнаружении неисправности, во избежание негативных последствий (прогорание поршней из-за детонации, повреждение каталитического нейтрализатора в случае возникновения пропусков воспламенения топливовоздушной смеси, превышение предельных значений по токсичности отработавших газов и пр.), контроллер переводит систему на аварийные режимы работы. Суть их состоит в том, что при выходе из строя какого-либо датчика или его цепи контроллер для управления двигателем применяет замещающие данные, хранящиеся в ППЗУ.

Сигнализатор неисправности системы управления двигателем расположен в комбинации приборов. Если система исправна, то при включении зажигания сигнализатор должен загореться — таким образом ЭСУД проверяет исправность сигнализатора и цепи управления. После пуска двигателя сигнализатор должен погаснуть, если в памяти контроллера отсутствуют условия для его включения. Включение сигнализатора при работе двигателя информирует водителя о том, что бортовая система диагностики обнаружила неисправность и дальнейшее движение автомобиля происходит в аварийном режиме. При этом могут ухудшиться некоторые параметры работы двигателя (мощность, приемистость, экономичность), но движение с такими неисправностями возможно, и автомобиль может самостоятельно доехать до СТО. Единственным исключением является датчик положения коленчатого вала, при неисправности датчика или его цепей двигатель работать не может.

После устранения причин неисправности сигнализатор будет выключен контроллером через определенное время задержки, в течение которого неисправность не проявляется, и при условии, что в памяти контроллера отсутствуют другие коды неисправностей, требующие включение сигнализатора. Коды неисправностей (даже если сигнализатор погас) остаются в памяти контроллера и могут быть считаны с помощью диагностического прибора DST-2M, подключаемого к диагностическому разъему.

При удалении кодов неисправностей из памяти контроллера с помощью диагностического прибора или посредством отключения аккумуляторной батареи (не менее чем на 10 с) сигнализатор гаснет.

Датчики системы впрыска выдают контроллеру информацию о параметрах работы двигателя и автомобиля, на основании которых он рассчитывает момент, длительность и порядок открытия топливных форсунок, момент и порядок искрообразования.

 

Датчик положения коленчатого вала (ДПКВ) установлен на корпусе масляного насоса. Датчик положения коленчатого вала изображен на рисунке 21.

 

Рисунок 21 – Датчик положения коленчатого вала

 

Датчик выдает контроллеру информацию о частоте вращения и угловом положении коленчатого вала. Датчик — индуктивного типа, реагирует на прохождение вблизи своего сердечника зубьев задающего диска, объединенного со шкивом привода генератора. Шкив привода генератора изображен на рисунке 6. Зубья расположены на диске с интервалом 6°. Для синхронизации с ВМТ поршней 1 и 4 цилиндров два зуба из 60 срезаны, образуя впадину. При прохождении впадины мимо датчика в нем генерируется так называемый опорный импульс синхронизации. Установочный зазор между сердечником и вершинами зубьев должен находиться в пределах 1±0,4 мм. При вращении задающего диска изменяется магнитный поток в магнитопроводе датчика — в его обмотке наводятся импульсы напряжения переменного тока. По количеству и частоте этих импульсов контроллер рассчитывает фазу и длительность импульсов управления форсунками и катушкой зажигания.

 

Рисунок 22 – Шкив генератора

 

Датчик фаз (ДФ) установлен на заглушке головки блока цилиндров.

Принцип действия датчика основан на эффекте Холла. В отверстие хвостовика распределительного вала запресован штифт Когда штифт вала проходит мимо сердечника датчика, датчик выдает на контроллер импульс напряжения низкого уровня (около 0 В), соответствующий положению поршня 1-го цилиндра в конце такта сжатия. Сигнал датчика фаз контроллер использует для последовательного впрыска топлива в соответствии с порядком работы цилиндров. При выходе из строя датчика фаз контроллер переходит в режим нефазированного впрыска топлива. Он изображен на рисунке 23.

 

Рисунок 23 – датчик фаз

 

Датчик температуры охлаждающей жидкости (ДТОЖ) установлен в выпускном патрубке на головке блока цилиндров, изображен на рисунке 8.

Датчик представляет собой терморезистор с отрицательным температурным коэффициентом, т. е. его сопротивление уменьшается при повышении температуры. Контроллер подает на датчик через резистор (около 2 кОм) стабилизированное напряжение +5 В и по падению напряжения на датчике рассчитывает температуру охлаждающей жидкости, значения которой используются в большинстве функций управления двигателем. При возникновении неисправностей цепей ДТОЖ загорается сигнализатор неисправности системы управления двигателем, контроллер включает вентилятор системы охлаждения на постоянный режим работы и рассчитывает значение температуры по обходному алгоритму.

Рисунок 24 – Датчик температуры охлаждающей жидкости

 

 

Датчик положения дроссельной заслонки (ДПДЗ) установлен на оси дроссельной заслонки и представляет собой резистор потенциометрического типа и изображен на рисунке 25.

 

На один конец его обмотки подается от контроллера стабилизированное напряжение +5 В, а другой соединен с «массой» контроллера С третьего вывода потенциометра (ползунка) снимается сигнал для контроллера. Периодически измеряя выходное напряжение сигнала ДПДЗ, контроллер определяет текущее положение дроссельной заслонки для расчета угла опережения зажигания и длительности импульсов впрыска топлива, а также для управления регулятором холостого хода.

При выходе из строя ДПДЗ или его цепей контроллер включает сигнализатор неисправности и рассчитывает предполагаемое значение положения дроссельной заслонки по частоте вращения коленчатого вала и массовому расходу воздуха.

 

Рисунок 25 - Датчик положения дроссельной заслонки

 

Датчик массового расхода воздуха (ДМРВ) термоанемометрического типа расположен между воздушным фильтром и шлангом подвода воздуха к дроссельному узлу. Он изображен на рисунке 10.

В зависимости от расхода воздуха напряжение выходного сигнала датчика изменяется от 1,0 до 5,0 В. При выходе из строя датчика или его цепей контроллер рассчитывает значение массового расхода воздуха по частоте вращения коленчатого вала и положению дроссельной заслонки ДМРВ имеет встроенный датчик температуры воздуха (ДТВ), чувствительным элементом которого является термистор, установленный в потоке воздуха. Выходной сигнал датчика изменяется в диапазоне от 0 до 5,0 В в зависимости от температуры воздуха, проходящего через датчик. При возникновении неисправности цепи ДТВ контроллер включает сигнализатор неисправности и заменяет показания датчика фиксированным значением температуры воздуха (33 °С).

 

Рисунок 26 – Датчик массового расхода воздуха

 

Датчик детонации (ДД) закреплен в передней верхней части блока цилиндров, изображен на рисунке 27.

Пьезокерамический чувствительный элемент датчика генерирует сигнал напряжения переменного тока, амплитуда и частота которого соответствуют параметрам вибраций двигателя. При возникновении детонации амплитуда вибраций определенной частоты возрастает. При этом для гашения детонации контроллер корректирует угол опережения зажигания.

Рисунок 27 – Датчик детонации

 

Управляющий датчик концентрации кислорода (УДК) установлен в катколлекторе до каталитического нейтрализатора отработавших газов.

Контроллер рассчитывает длительность импульса впрыска топлива по таким параметрам, как массовый расход воздуха, частота вращения коленчатого вала, температура охлаждающей жидкости, положение дроссельной заслонки. По сигналу от УДК о наличии кислорода в отработавших газах контроллер корректирует подачу топлива форсунками, так чтобы состав отработавших газов был оптимальным для эффективной работы каталитического нейтрализатора.

Кислород, содержащийся в отработавших газах, создает разность потенциалов на выходе датчика, изменяющуюся приблизительно от 50 до 900 мВ. Низкий уровень сигнала соответствует бедной смеси (наличие кислорода), а высокий уровень — богатой (кислород отсутствует). Когда УДК находится в холодном состоянии, выходной сигнал датчика отсутствует, т. к. его внутреннее сопротивление в этом состоянии очень высокое — несколько МОм (система управления двигателем работает по разомкнутому контуру). Для нормальной работы датчик концентрации кислорода должен иметь температуру не ниже 300 °С, поэтому для быстрого прогрева после запуска двигателя в него встроен нагревательный элемент, которым управляет контроллер. По мере прогрева сопротивление датчика падает и он начинает генерировать выходной сигнал. Контроллер постоянно выдает в цепь датчика стабилизированное опорное напряжение 450 мВ Пока датчик не прогреется, его выходное напряжение находится в диапазоне от 300 до 600 мВ. При этом контроллер управляет системой впрыска, не учитывая напряжение на датчике. По мере прогрева датчика его внутреннее сопротивление уменьшается и он начинает изменять выходное напряжение, выходящее за пределы указанного диапазона Тогда контроллер отключает нагрев датчика и начинает учитывать сигнал датчика концентрации кислорода для управления топливоподачей в режиме замкнутого контура.

Датчик концентрации кислорода может быть отравлен в результате применения этилированного бензина или использования при сборке двигателя герметиков, содержащих в большом количестве силикон (соединения кремния) с высокой летучестью. Испарения силикона могут попасть через систему вентиляции картера в камеру сгорания. Присутствие соединений свинца или кремния в отработавших газах может привести к выходу датчика из строя.

В случае выхода из строя датчика или его цепей контроллер включает сигнализатор неисправности, заносит в свою память соответствующий код неисправности и управляет топливоподачей по разомкнутому контуру.

Диагностический датчик концентрации кислорода (ДДК) применяется в системе управления двигателем, выполненной под нормы токсичности Euro-З. ДДК установлен в катколлекторе после каталитического нейтрализатора отработавших газов. Принцип работы ДДК такой же, как и УДК. Сигнал, генерируемый ДДК, указывает на наличие кислорода в отработавших газах после нейтрализатора. Если нейтрализатор работает нормально, показания ДДК будут значительно отличаться от показаний УДК. Напряжение выходного сигнала прогретого ДДК при работе в режиме замкнутого контура и исправном нейтрализаторе должно находиться в диапазоне от 590 до 750 мВ. При возникновении неисправности датчика или его цепей контроллер заносит в свою память код неисправности и включает сигнализатор. Он изображен на рисунке 28.

Рисунок 28 – Датчик кислорода

Датчик скорости автомобиля установлен сверху на картере коробки передач. Его изображение представлено на рисунке 29.

Принцип его действия основан на эффекте Холла. Задающий диск датчика установлен на коробке дифференциала. Датчик выдает на контроллер прямоугольные импульсы напряжения (нижний уровень — не более 1 В, верхний - не менее 5 В) с частотой, пропорциональной скорости вращения ведущих колес. Количество импульсов датчика пропорционально пути, пройденному автомобилем. Контроллер определяет скорость автомобиля по частоте импульсов. При выходе из строя датчика или его цепей контроллер заносит в свою память код неисправности и включает сигнализатор.

 

Рисунок 29 – Датчик скорости

 

Датчик неровной дороги (ДНД) применяется в системе управления двигателем, выполненной под нормы токсичности Euro-З. Датчик установлен в моторном отсеке на правой чашке брызговика. Он изображен на рисунке 30.

Датчик предназначен для измерения амплитуды колебаний кузова Принцип его работы основан на пьезоэффекте. Возникающая при движении по неровной дороге переменная нагрузка на трансмиссию влияет на угловую скорость вращения коленчатого вала двигателя При этом колебания частоты вращения коленчатого вала похожи на аналогичные колебания, возникающие при пропусках воспламенения топливовоздушной смеси в цилиндрах двигателя. В этом случае для предупреждения ложного обнаружения пропусков воспламенения контроллер отключает эту функцию бортовой системы диагностики при превышении сигнала ДНД выше определенного порога. При выходе из строя датчика или его цепей контроллер заносит в свою память код неисправности и включает сигнализатор.

Рисунок 30 – Датчик неровной дороги

 

Четырехвыводная катушка зажигания представляет собой блок из двух катушек. Она представлена на рисунке 31.

Рисунок 31 – Катушка зажигания

 

Система зажигания состоит из катушки зажигания, высоковольтных проводов и свечей зажигания. При эксплуатации она не требует обслуживания и регулирования, за исключением замены свечей.

Управление током в первичных обмотках катушек осуществляется контроллером в зависимости от режима работы двигателя. К выводам вторичных (высоковольтных) обмоток катушек подключены свечные провода: к одной обмотке — 1-го и 4-го цилиндров, к другой — 2-го и 3-го. Таким образом, искра одновременно проскакивает в двух цилиндрах (1-4 или 2-3) — в одном во время такта сжатия (рабочая искра), в другом - во время такта выпуска (холостая). Катушка зажигания — неразборная, при выходе из строя ее заменяют.

В состав модуля зажигания входят две катушки зажигания, а также два высоковольтных ключа-коммутатора. Катушки зажигания обеспечивают накопление энергии достаточного количества, которое затем подается на свечи зажигания. Катушки зажигания состоят из двух обмоток (первичной и вторичной), которые индуктивно связанны. Принцип работы катушек зажигания основывается на законе индукции. При протекании тока по первичной обмотке сердечник намагничивается и создается сильное магнитное поле вокруг обеих обмоток. Величиной тока, который проходит через первичную обмотку (зависит от времени накопления) и индуктивностью первичной обмотки определяется накопленная в магнитном поле энергия системы зажигания, которая составляет более 40 мДж.

В определенный момент времени протекание тока по первичной обмотке прерывается и созданное им магнитное поле исчезает. В случае изменения магнитного потока, который пронизывает витки вторичной обмотки, в ней наводится ЭДС – электродвижущая сила самоиндукции. Ее величина зависит от коэффициента трансформации катушки зажигания, накопленной энергии, качества намотки катушек и является пропорциональной скорости изменения магнитного потока.

Свечи зажигания А17ДВРМ или их аналоги, с помехоподавительным резистором сопротивлением 4-10 кОм и медным сердечником. Зазор между электродами свечи — 1,0-1,1 мм Размер шестигранника под ключ — 21 мм. В связи с постоянным направлением тока во вторичных обмотках катушки, ток искрообразования у каждой пары свечей, работающих одновременно, всегда протекает с центрального электрода на боковой — для одной свечи и с бокового электрода на центральный — для другой. Электроэрозионный износ свечей пары будет разным.

Блок реле системы управления, состоящий из главного реле, реле электробензонасоса и реле электровентилятора системы охлаждения расположен под консолью панели приборов, рядом с контроллером. Он изображен на рисунке 32.

Рисунок 32 – Блок реле

 

При включении зажигания контроллер на 2 с запитывает реле электробензонасоса для создания необходимого давления в топливной рампе Если в течение этого времени проворачивание коленчатого вала стартером не началось, контроллер выключает реле и вновь включает его после начала проворачивания. Если зажигание включалось три раза подряд без проворачивания стартером коленчатого вала, то следующее включение реле электробензонасоса произойдет только с началом проворачивания.

При работе двигателя состав смеси регулируется длительностью управляющего импульса, подаваемого на форсунки (чем длиннее импульс, тем больше подача топлива). При пуске двигателя контроллер обрабатывает сигнал датчика температуры охлаждающей жидкости для определения необходимой для пуска длительности импульсов впрыска Во время пуска двигателя топливо подается в цилиндры двигателя «асинхронно» — независимо от положения коленчатого вала.

Необходимым условием пуска двигателя является достижение оборотов коленчатого вала при его прокрутке стартером не ниже 80 мин-1. При этом напряжение в бортовой сети автомобиля должно быть не менее 6 В.

Как только обороты коленчатого вала двигателя достигнут определенной величины (зависящей от температуры охлаждающей жидкости), контроллер формирует импульс фазированного включения форсунок — топливо подается в цилиндры «синхронно» (в зависимости от положения коленчатого вала). При этом контроллер по информации, поступающей от датчиков

системы, рассчитывает момент включения каждой форсунки: топливо впрыскивается один раз за один полный рабочий цикл соответствующего цилиндра.

При отсутствии сигнала с датчика положения коленчатого вала (вал не вращается или неисправен датчик и его цепи) контроллер отключает подачу топлива в цилиндры. Подача топлива отключается и при выключении зажигания, что предотвращает самовоспламенение смеси в цилиндрах двигателя.

В случае определения контроллером пропусков воспламенения топливовоздушной смеси в одном или нескольких цилиндрах подача топлива в эти цилиндры прекращается и сигнализатор неисправности системы управления начинает мигать. Во время торможения двигателем (при включенных передаче и сцеплении), когда дроссельная заслонка полностью закрыта, а частота вращения коленчатого вала двигателя велика, впрыск топлива в цилиндры не производится для снижения токсичности отработавших газов.

При падении напряжения в бортовой сети автомобиля контроллер увеличивает время накопления энергии в катушке зажигания (для надежного поджигания горючей смеси) и длительность импульса впрыска (для компенсации увеличения времени открытия форсунки). При возрастании напряжения в бортовой сети время накопления энергии в катушке зажигания и длительность подаваемого на форсунки импульса уменьшаются Контроллер управляет включением электровентилятора системы охлаждения (через реле) в зависимости от температуры двигателя, частоты вращения коленчатого вала и работы кондиционера (если он установлен).

Электровентилятор системы охлаждения включается, если температура охлаждающей жидкости превысит допустимое значение. В системе управления двигателем выполненной под нормы токсичности Euro-З, используется два реле включения электровентилятора. В зависимости от условий работы двигателя и кондиционера контроллер может включить электровентилятор на высокую скорость или на низкую — через другое реле и дополнительный резистор.

При обслуживании и ремонте системы управления двигателем всегда выключайте зажигание (в некоторых случаях необходимо отсоединить клемму провода от «минусового» вывода аккумуляторной батареи). При проведении сварочных работ на автомобиле отсоединяйте жгуты проводов системы управления двигателем от контроллера. Перед сушкой автомобиля в сушильной камере (после покраски) снимите контроллер. На работающем двигателе не отсоединяйте и не поправляйте колодки жгута проводов системы управления двигателем, а также клеммы проводов на выводах аккумуляторной батареи. Не пускайте двигатель, если клеммы проводов на выводах аккумуляторной батареи и наконечники «массовых» проводов на двигателе не закреплены или загрязнены.

 


 



Дата добавления: 2017-09-01; просмотров: 2703;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.027 сек.