Критерии оптимизации


 

Важная сторона оптимизации – это выбор критерия, по которому определяются свойства объекта и который позволяет количественно оценить какое из устройств данного класса является наилучшим.

Критерии в зависимости от назначения устройства могут быть самыми разными.

Так при проектировании фильтра критерий может относиться к его амплитудно-частной характеристике, минимуму потерь в полосе прозрачности и максимуму – в полосе заграждения.

В случае усилителя высокочастотных колебаний такой критерий может быть связан с получением максимального КПД, с соблюдением требования по нелинейным искажениям сигнала.

Несмотря на все разнообразие критериев их можно свести к единой математической записи – функции цели, которая в концентрированной форме отражает смысл решаемой задачи по оптимизации устройства – в наилучшем приближении его характеристик к требуемым согласно определенным признакам.

Все действия в такой программе оптимизации в конечном итоге направлены на получение экстремального значения функции цели – максимального или минимального, в зависимости от поставленной задачи.

Поскольку, как правило, качество устройства определяют несколько критериев (например, в приводимом выше примере с фильтром – максимум в одной полосе, минимум – в другой), то целевая функция является суммой определенного числа членов и по своему виду является взвешенно-аддитивно цифровой, отражающей требование минимального отличия желаемых (иногда идеальных) характеристик от реально получаемых. Составим в обобщенном виде функцию цели.

При исследовании в частотной области для целевой функции, определяемой K критериями, запишем:

 

(6.5)

 

где Фk – частная целевая функция для k-й характеристики;

ψkT – функция, определяющая требуемую k-ю частотную характеристику;

ψkP – функция, определяющая реально полученную k-ю частотную характеристику, зависящую от параметров устройства;

Vk – весовой множитель для k-й характеристики.

Мерой расхождения между требуемой и реальной характеристиками могут являться или минимум суммы квадратов уклонений, или минимаксный критерий. При них функция цели примет вид:

 

(6.6)

 

(6.7)

Кроме того возможен вариант, когда требуется получить максимальное отношение параметров устройства, например Ak к Bk. Тогда функция цели примет вид:

(6.8)

 

Путем определенной процедуры следует найти или минимальное при (6.6) и (6.7), или максимальное при (6.8) значение функции цели. Для определенности рассмотрим первый случай, связанный с получением минимального значения.

Разделим все параметры устройства, определяющие его реальную характеристику ψkP, на две группы: варьируемые (x1,x2,…,xn) и неизменные (y1,y2,…,ym). Соберем варьируемые параметры (их еще называют переменными) в вектор-столбец, который затем преобразуем в транспонированную матрицу:

 

(6.9)

 

Аналогичным образом поступим с постоянными или неизменными параметрами устройства:

(6.10)

Будем рассматривать вектор x как точку или элемент n-мерного действительного пространства Rn . Совокупность объектов x произвольного содержания (точки, векторы, функции и т.д.) составляют множество X, а сами объекты есть элементы этого множества. Совместив понятия точечного множества, составленного из точек х, и n-мерного пространства Rn , можно утверждать, что множество X представляет собой совокупность точек х в многомерном пространстве Rn .

В процессе поиска среди множества векторов x следует найти такой вектор Xопт в пространстве Rn , при котором функция цели (6.6) или (6.7) минимальна:

 

, где x Є Rn (6.11)

 

При этом на вектор х могут накладываться определенные ограничения. Точка xопт соответствует наилучшему в соответствии с выбранными критериями варианту проектируемого устройства. Поиск xопт относится к классу задач, объединяемых теорией нелинейного программирования. При этом вектор х во всех рассматриваемых ниже задачах ограничен определенным пространством Rn , что можно следующим образом представить в развернутом виде:

 

x1мин ≤ x1 ≤ x1макс, ……….xn.мин ≤ xn.макс (6.12)

 

При функции цели в виде (6.8) выражение (6.11) примет вид:

 

Fц (xопт,y)=maxF(x,y), где x Є Rn (6.13)

 

Перейдем к рассмотрению путей нахождения xопт.

 



Дата добавления: 2017-05-02; просмотров: 2793;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.