Две основные задачи динамики точки. Интегралы уравнений движения.


 

Первая задача состоит в том, чтобы по заданному закону движения точки массой m определить силу, под действием которой происходит это движение.

 

Вторая задача состоит в определении движения точки по заданным силам и начальным условиям движения, при этом силы должны быть выражены как функции переменных, используемых для задания движения.

 

Решение этой задачи сводится к интегрированию диф. уравнений второго порядка, в процессе которого в решениях появляются произвольные постоянные.

В задаче о движении точки в трехмерном пространстве общие решения будут содержать шесть произвольных постоянных:

 

Если начальные условия поставлены для начальных значений функций и их первых производных, т.е. в виде

то задача Коши имеет единственное решение. Т.о. приложенные к точке силы определяют только её ускорение, движение же точки помимо сил зависит от начальных условий – положения точки в рассматриваемой инерциальной системы отсчета и её скорости.

 

Первым интегралом системы дифференциальных уравнений (1) называется функция

Выражение

называется производной по времени функции , вычисленной в силу дифференциальных уравнений (1).

 

Для того чтобы полностью найти закон движения материальной точки, достаточно найти шесть функционально независимых первых интегралов.

Пусть

- шесть независимых первых интегралов системы (1).

Т.к. по условию - функционально независимы получаем общее решение системы:

 



Дата добавления: 2021-07-22; просмотров: 475;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.