Ширина спектральной линии


До сих пор мы рассматривали ансамбли одинаковых частиц, имеющих, например, энергетические уровни Е2 и Е1, между кото­рыми совершаются переходы. При излучательных переходах между уровнями Е2 и Е1 различных частиц частота излучения всех частиц по формуле должна быть одинаковой. Однако в соответствии с принципом Паули в системе частиц не может быть больше двух частиц, имеющих одинаковую энергию. Поэтому при образовании ансамбля одина­ковых частиц их энергетические уров­ни несколько расщепляются. Степень размытия уровней определяется соот­ношением Гейзенберга, которое можно записать в форме

DЕDt ³ h, (2.49)

где и Dt - неопределённости энергии и времени.

Предположим, что необходимо определить частоту излучения при переходе с уровня 2 на основной уровень 1. Вре­мя жизни частиц в возбужденном состоянии определяется: t2=1/А21. Следует считать, что неопределенность времени равна времени жизни частицы, т.е. Dt=t2. Подставляя Dt в формулу (2.49), полу­чаем неопределенность энергии уровня 2: 2 ³ h/t2. Наиболее широкими оказываются уровни с малым временем жиз­ни. Неопределенность частоты перехода между «размытыми» уровнями 2 и 1 с ширинами 2 и 1 находится из со­отношения nmaх–nmin=(DЕ2 + DЕ1)/h и определяется суммой неопределенностей энергии обоих уровней. Ширина спектральной линии, определяемая только временем жизни частиц по спонтанному излучению, минимальна и называется есте­ственной шириной спектральной линии. Ширину контура спект­ральной линии принято определять как разность частот, на которых интенсивность I равна половине максимального значения Iо. Частотой перехода (центральной частотой перехода) называют частоту, соответствующую максимуму спектральной ли­нии. Форма спектральной линии может быть представлена так назы­ваемой лоренцевой кривой I/I0 = Dn2 / [(n -n0)2 + Dn2], совпадающей с резо­нансной кривой ко­лебательного конту­ра. Реальные наблю­даемые спектраль­ные линии имеют ширину больше ес­тественной.

Уширение спек­тральной линии из-за столкнове­ний. В газообразных веществах молекулы газа, находясь в тепловом движении, сталкиваются друг с другом; при этом часть таких столкновений носит неупру­гий характер. При неупругих соударени­ях совершается переход между уровня­ми, что сокращает время жизни части­цы на уровне по сравнению с временем жизни, обусловленным спонтанными переходами. Но уменьшение времени жизни на уровне в соответствии с прин­ципом Гейзенберга приводит к увеличению размытости уров­ня DЕ, что в свою очередь приводит к уширению спектра излучения. Для уменьшения эффекта уширения линии излучения при столкно­вениях в некоторых квантовых приборах используются методы, сни­жающие вероятность неупругих столкновений излучающих частиц. Для этого увеличивают длину свободного пробега частиц, заставляя их двигаться в форме остро направленных пучков. Для предотвра­щения сокращения времени жизни при неупругих соударениях со стенками сосуда последние покрывают материалом, при столкнове­ниях с которым частица испытывает только упругое отражение.

Доплеровское уширение спектральной линии. Это уширение связано с эффектом Доплера, т.е. с зависимостью наблюдае­мой частоты излучения от скорости движения излучателя. Если ис­точник, создающий в неподвижном состоянии монохроматическое излучение с частотой n0, движется со скоростью V в сторону к на­блюдателю так, что проекция скорости на направление наблюде­ния составляет Vх, то наблюдатель регистрирует более высокую частоту излучения

n = n0 (1 + Vх / с) = n0 (1 + V cosq / c), (2.50)

где с – фазовая скорость распространения волны; q – угол между на­правлениями движения излучателя и наблюдения.

В квантовых системах источниками излучения являются атомы или молекулы. В газообразной среде при термодинамическом рав­новесии скорости частиц распределены по закону Максвелла – Больцмана. Поэтому и форма спектральной линии всего вещества будет связана с этим распределением. В спектре, регистрируемом наблюдателем, должен быть непрерывный набор частот, так как разные атомы движутся с разными скоростями относительно на­блюдателя. Учитывая лишь проекции скоростей Vx распределении Максвелла – Больцмана, можно получить следующее выражение для формы доплеровской спектральной линии

I = I0 еxp . (2.51)

Эта зависимость является гауссовской функцией. Соответствующая значению I0/2 ширина линии

. (2.52)

С увеличением массы частиц М и понижением температуры Т шири­на линии Dn уменьшается.

Наблюдаемая спектральная линия вещества представляет со­бой суперпозицию спектральных линий всех частиц вещества, т.е. линий с различными центральными частотами. Для легких частиц при обычной температуре ширина доплеровской линии в оптичес­ком диапазоне может превышать естественную ширину линии на несколько порядков и достигать значения более 1 ГГц.

В квантовых приборах широко используются твердые вещества с примесными ионами, квантовые переходы которых являются ра­бочими. Колебания кристаллической решетки создают переменное электрическое поле, которое влияет на ионы решетки и изменяет их энергию, а это приводит к размытию энергетических уровней и уширению спектральной линии. Кроме того, ширина линии увеличивает­ся вследствие тепловых колебаний самих ионов. Причиной уширения спектральной линии твердого тела может быть также пространс­твенная неоднородность физических параметров среды или неод­нородности электрического и магнитного полей. Причиной уширения спектральной линии может быть также электромагнитное излу­чение, вызывающее вынужденные переходы между рассматривае­мыми уровнями и приводящее к изменению времени жизни частицы. Поэтому, например, процесс генерации излучения в квантовых при­борах будет приводить к изменению ширины линии.



Дата добавления: 2017-05-02; просмотров: 1612;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.