Определение 2.1.6. Глобальный минимум
x* Î En – точка строгого глобального минимума функции f(x) на En, если выполнено условие f(x*) < f(x), " x Î En, x ¹ x*. |
Очевидно, что для одноэкстремальной функции точка ее локального минимума одновременно является и точкой ее глобального минимума.
Для многоэкстремальной функции точка глобального минимума функции совпадает с точкой (точками) того локального минимума, в которой функция достигает наименьшего значения.
Точка глобального минимума функции f(x), очевидно, является оптимальным решением задачи (2.1.1). Однако, как и в случае одномерной оптимизации, практически все используемые методы многомерной оптимизации ориентированы на поиск только одного минимума функции, в общем случае являющегося локальным, поскольку отыскание глобального минимума для многоэкстремальных функций чрезвычайно затруднено и требует просмотра всех ее локальных экстремумов. Поэтому в дальнейшем будем считать, что построение оптимального решения задачи (2.1.1) аналогично нахождению локального минимума функции f(x).
Сформулируем теперь необходимые и достаточные условия наличия локального экстремума дифференцируемой функции f(x) в точке x Î En. Предположим, что скалярная функция f(x) и ее частные производные до второго порядка включительно определены и непрерывны для любых x Î En. Как известно, функция f(x) может иметь экстремум лишь в тех точках, в которых все ее частные производные первого порядка равны нулю или терпят разрыв. Последнее в силу предположения о непрерывности функции и ее частных производных исключается из рассмотрения, что позволяет на данном этапе не усложнять изложение материала.
Введем вектор градиента функции f(x)
Ñf(x) = (¶ f(x)/¶ x1, ¶ f(x)/¶ x2, …, ¶ f(x)/¶ xn)т.
Тогда функция может иметь минимум только в точках x*Î En, где Ñf(x*) = 0. Такие точки называют стационарными.
Условие Ñf(x*) = 0 является необходимым условием экстремума.
В стационарных точках функция может иметь минимум, максимум, седловую точку или не иметь ни того, ни другого.
Достаточным условием наличия в стационарной точке x* локального минимума функции f(x) является положительная определенность матрицы Гессе для данной функции в этой точке. Матрица Гессе для функции
n-переменных – квадратная матрица, составленная из частных производных второго порядка данной функции. Матрица Гессе H(x*) будет положительно определенной в точке x*, если для любого ненулевого вектора x Î En выполняется условие
xтH(x*)x > 0.
Таким образом, для того чтобы точка x* Î En, в которой выполнено условие Ñf(x*) = 0, являлась точкой минимума дважды непрерывно диф-ференцируемой функции f(x), достаточно выполнения в этой точке условия xтH(x*)x > 0. При этом условие Ñf(x*) = 0 – необходимое, а xтH(x*)x > 0 – достаточное условие существования в точке x* Î En минимума функции f(x). В общем случае минимум может встречаться в точках, в которых сформулированные условия не выполняются, например в точках разрыва частных производной или самой функции, т. е. в тех точках, которые были исключены из предыдущего анализа. Однако если сформулированные необходимые и достаточные условия выполнены, то точка x* Î En является точкой локального минимума.
Многие известные методы решения задачи (2.1.1) используют необходимые условия экстремума в том смысле, что они ориентированы на поиск решения уравнения
Ñf(x) = 0,
т. е. на поиск стационарных точек минимизируемой функции.
Рассматриваемые в данном пособии методы многомерной минимизации, как и методы одномерной минимизации, можно классифицировать по признаку использования частных производных минимизируемой функции следующим образом:
– методы нулевого порядка – их реализация не требует вычисления частных производных функции f(x);
– методы первого порядка – их реализация требует вычисления частных производных первого порядка функции f(x);
– методы второго порядка – их реализация требует вычисления
частных производных второго порядка функции f(x).
Дата добавления: 2021-07-22; просмотров: 351;