МОДЕЛИ СТРУКТУРЫ ПОТОКОВ


 

СТРУКТУРА ПОТОКОВ в аппаратах непрерывного действия, существенно влияет на химимческие процессы, тепло-и массообмен. Для процессов в многофазных потоках важно взаимное направление движения фаз (противоток, прямоток и др.) и геометрические формы движущихся объемов (пленки, струи, капли, пузыри). При рассмотрении переноса процессов существенны режим течения (ламинарный, турбулентный) и связанная с ним проблема пограничного слоя. Большое значение имеют различия во времени пребывания частиц потока в рабочем объеме и их взаимное перемешивание в результате нестационарности поля скоростей, неравномерности распределения скоростей и их разнонаправленности. В частицах потока, покидающих рабочий объем быстрее других, процесс оказывается незавершенным; в частицах, задерживающихся в этом объеме, он проходит глубже. Поскольку скорость процесса обычно снижается во времени, его незавершенность определяется долей частиц с малым временем пребывания. Отрицательное влияние неравномерности распределения времени пребывания тем сильнее, чем выше требуемая степень незавершенности процесса.

Перемешивание в потоках подразделяют по направлению на поперечное и продольное, а также по уровню - перемешивание на макроуровне (смешивающиеся частицы сохраняют свою индивидуальность) и на микроуровне (происходит гомогенизация частиц). Поперечное перемешивание, как правило, связана с турбулентностью; оно интенсифицирует массо- и теплоперенос. Продольное перемешивание - взаимное смешение элементов потока, поступивших в аппарат в разные моменты времени. Оно приводит к выравниванию профилей концентраций и температур по длине потока, к неравномерности распределения времен пребывания, часто уменьшает движущую силу процесса и снижает его эффективность. Для подавления продольного перемешивания и усиления поперечного применяют секционирование потока с помощью соответствующих устройств.

Для анализа химико-технологических процессов используют модели структуры потоков разной степени идеализации; простейшие из них - идеальное вытеснение и идеальное смешение. В первом случае предполагается отсутствие продольного перемешивания при полном поперечном, время пребывания всех частиц одинаково. Эта модель удовлетворительно описывает, например, множественные процессы в длинных тpyбax, особенно заполненных зернистыми слоями. В модели идеального смешения полагают, что элементы потока при поступлении в аппарат мгновенно и равномерно смешиваются со всем его содержимым, концентрации и температура одинаковы во всех точках объема. К этой модели близки, например, потоки в аппаратах с интенсивным механическим перемешиванием.

Упомянутые модели - крайние случаи условий смешения в потоке. Промежуточные случаи описывают модели, выбор которых определяется физ. картиной процесса и степенью сложности расчетов. Диффузионные модели представляют поток как вытеснение, на которое накладывается перенос в продольном (однопараметричная модель) или в продольном и поперечном (двухпараметричная модель) направлениях, причем перенос формально описывается уравнениями диффузии. Ячеечная модель представляет поток как последовательность одинаковых ячеек идеального смешения, причем число ячеек подбирается так, чтобы отразить влияние продольного перемешивания. Ячеечная модель удовлетворительно описывает потоки в секционированных аппаратах; как простую расчетную схему ее иногда используют и для иных потоков. Более сложные потоки описываются комбинированными моделями (схемные соединения простых моделей).

Каждой модели структуры потоков отвечает уравнение или система уравнений, позволяющие рассчитывать процесс в потоке и необходимый объем аппарата. Эти уравнения содержат параметры моделей (эффективный коэффициент диффузии, число ячеек и др.), для определения которых применяют различные методы. Например, на входе потока вводят по определенному закону (импульсному, ступенчатому и др.) индикатор, а на выходе регистрируют отклик - изменение концентрации индикатора во времени. Обработка отклика методами статистики позволяет оценить закон распределения времени пребывания и найти параметры модели.

Сведения о структуре потоков особенно важны при моделировании промышленных аппаратов. При переходе к ним от малых установок следует учитывать изменение структуры потоков. Знание параметров структуры потоков и физико-химических характеристик процессов позволяет расчетным путем исследовать и прогнозировать поведение аппаратов и определять оптимальные условия их работы.

 



Дата добавления: 2017-04-05; просмотров: 2380;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.