Задачи оптимизации.


Эти задачи являются одними из важнейших задач прикладной математики. Под оптимизацией понимают выбор наилучшего варианта из всех возможных решений данной задачи. Для этого необходимо сформулировать решаемую задачу как математическую, придав количественный смысл понятиям лучше или хуже. Обычно в процессе решения необходимо найти оптимизируемые значения параметров. Эти параметры называют проектными. А число проектных параметров определяет размерность задачи.

Количественная оценка решения производится с помощью некоторой функции зависящей от проектных параметров. Эта функция называется целевой. Она строится таким образом, чтобы наиболее оптимальное значение соответствовало максимуму(минимуму).

- целевая функция.

Наиболее просты случаи, когда целевая функция зависит от одного параметра и задаётся явной формулой. Целевых функций может быть несколько.

Например, при проектировании самолёта требуется одновременно обеспечить максимальную надежность, минимальные вес и стоимость и т.д. В таких случаях вводится система приоритетов. Каждой целевой функции ставится в соответствие некоторый целевой множитель в результате получается обобщенная целевая функция(функция компромиссов).

Обычно оптимальное решение ограничено рядом условий связанных с физической функцией задачи. Эти условия могут иметь вид равенств или неравенств

Теория и методы решения задач оптимизации при наличии ограничений составляют предмет исследований одного из разделов прикладной математики – математического программирования.

Если целевая функция линейна относительно проектных параметров и ограничения, накладываемые на параметры также линейны, то возникает задача линейного программирования. Рассмотрим методы решения одномерной задачи оптимизации.

Требуется найти значения на при которых целевая функция имеет максимальное значение. Если целевая функция задана аналитически и может быть найдено выражение для её производных, то оптимальное решение будет достигаться либо на концах отрезка, либо в точках в которых производная обращается в ноль. Это критические точки и . Необходимо найти значения целевой функции во всех критических точках и выбрать максимальное.

В общем случае для нахождения решения применяют различные методы поиска. В результате происходит сужение отрезка содержащего оптимальное решение.

Рассмотрим некоторые из методов поиска. Предположим, что целевая функция на промежутке имеет один максимум. В этом случае, разбив узловыми точками , число которых , вычисляют целевую функцию в этих узловых точках. Предположим, что максимальное значение целевой функции будет в узле , тогда можно считать, что оптимальное решение находится на интервале . В результате произведено сужение отрезка, содержащего оптимальное решение. Полученный новый отрезок вновь разбивают на частей и т.д. При каждом разбиении отрезок, содержащий оптимальное решение уменьшаются в раз.

Предположим, что произведено шагов сужения. Тогда исходный отрезок уменьшается в раз.

То есть, делаем пока выполняется (*)

При этом производится вычислений целевой функции.

Требуется найти такое значение, чтобы выражение (*) было получено при наименьшем

числе вычислений .

Метод 37



Дата добавления: 2017-03-12; просмотров: 2096;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.