Функции Бесселя первого рода
Функциями Бесселя первого рода, обозначаемыми , являются решения, конечные в точке
при целых или неотрицательных
. Выбор конкретной функции и её нормализации определяются её свойствами. Можно определить эти функции с помощью разложения в ряд Тейлора около нуля (или в более общий степенной ряд при нецелых
):
Здесь — это гамма-функция Эйлера, обобщение факториала на нецелые значения. График функции Бесселя похож на синусоиду, колебания которой затухают пропорционально
, хотя на самом деле нули функции расположены не периодично.
Ниже приведены графики для
:
Если не является целым числом, функции
и
линейно независимы и, следовательно, являются решениями уравнения. Но если
целое, то верно следующее соотношение:
Оно означает, что в этом случае функции линейно зависимы. Тогда вторым решением уравнения станет функция Бесселя второго рода.
Можно дать другое определение функции Бесселя для целых значений , используя интегральное представление:
Этот подход использовал Бессель, изучив с его помощью некоторые свойства функций. Возможно и другое интегральное представление: