Функции Бесселя первого рода

Функциями Бесселя первого рода, обозначаемыми , являются решения, конечные в точке при целых или неотрицательных . Выбор конкретной функции и её нормализации определяются её свойствами. Можно определить эти функции с помощью разложения в ряд Тейлора около нуля (или в более общий степенной ряд при нецелых ):

Здесь — это гамма-функция Эйлера, обобщение факториала на нецелые значения. График функции Бесселя похож на синусоиду, колебания которой затухают пропорционально , хотя на самом деле нули функции расположены не периодично.

Ниже приведены графики для :

Если не является целым числом, функции и линейно независимы и, следовательно, являются решениями уравнения. Но если целое, то верно следующее соотношение:

Оно означает, что в этом случае функции линейно зависимы. Тогда вторым решением уравнения станет функция Бесселя второго рода.

Можно дать другое определение функции Бесселя для целых значений , используя интегральное представление:

Этот подход использовал Бессель, изучив с его помощью некоторые свойства функций. Возможно и другое интегральное представление:






Дата добавления: 2017-03-12; просмотров: 643; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2019 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.007 сек.