Выпуклость, вогнутость, точки перегиба


Пусть функция дифференцируема в точке Тогда в точке она имеет касательную, каждая точка удовлетворяет уравнению

Определение 3.Говорят, что кривая выпукла вверх в точке если существует такое, что в окрестности кривая находится

ниже своей касательной (3) в точке т.е. если Если же

то кривая называется выпуклой вниз в точке (часто говорят, о выпуклости или вогнутости в точке ). Говорят, что кривая выпукла вверх (выпукла вниз) на интервале если она выпукла вверх (выпукла вниз) в каждой точке этого интервала.

На рисунке Р.2 функция выпукла вверх в точке а на Р.3 – выпукла вниз.

Теорема 3.Пусть функция дважды дифференцируема на интервале . Тогда справедливы высказывания:

1. если то кривая выпукла вверх на

2. если то кривая выпукла вниз на

Доказательство.Пусть произвольная точка интервала Окружим её отрезком Так как функция удовлетворяет на этом отрезке всем условиям теоремы Тейлора с остаточным членом в форме Лагранжа, то для всех имеет место представление

С другой стороны, в точке функция имеет касательную с уравнением .Значит, Отсюда видно, что если (тогда и ), то значит,

кривая выпукла вверх в точке Если же то то значит, кривая выпукла вниз в точке Теорема доказана.

Определение 4.Точка называется точкой перегиба кривой если:а) дифференцируема в точке ; б) кривая при переходе через точку изменяет направление выпуклости (это равносильно тому, что разность изменяет знак при переходе через точку ).

Необходимое условие точки перегиба.Если - точка перегиба и если существут то

Доказательствовытекает из локальной формулы Тейлора и из равенства

 

Замечание 4.К точкам, подозрительным на “перегиб”, следует отнести, прежде всего, точки , для которых Однако “перегиб” может иметь место и в точках, в которых вторая производная не существует или равна Например, в точке функция имеет производную И в этой точке эта функция имеет “перегиб”. Очевиден следующий результат.

Теорема 4 (достаточное условие точки перегиба).Пусть функция дифференцируема в точке и некоторой её окрестности и дважды дифференцируема в некоторой проколотой окрестности этой точки. Тогда если при переходе через точку вторая производная изменяет знак, то точка перегиба кривой

 



Дата добавления: 2016-06-05; просмотров: 1483;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.