Замена переменной в неопределенном интеграле


Перейдем к формулировке теоремы о замене переменной в неопределенном интеграле, которая часто используется при вычислении интегралов. Здесь имеются в виду два утверждения[1]:

где функция, обратная к функции

Теорема 2. а) Пусть выполнены условия: 1) функция непрерывна в своей области определения б) функция непрерывно дифференцируема на множестве таком, что

Тогда для всех имеет место равенство

б) Пусть выполнены условия: 1) функция непрерывна в своей области определения

2) функция непрерывно дифференцируема[2] на множестве таком, что

3) 4) функция имеет на множестве обратную функцию Тогда для всех имеет место равенство

Замечание 1. Преобразования в часто называют процедурой введения множителя под знак дифференциала. Формулу удобно применять в тех случаях, когда функция легче интегрируется, чем исходная функция Например,

= Далее надо вернуться к старой переменной с помощью обратной функции и получить ответ:

3. Интегрирования по частям в неопределенном интеграле

При вычислении интегралов часто используется операция интегрирования по частям, законность которой регламентируется следующим утверждением.

Теорема 3. Пусть функции непрерывно дифференцируемы на множестве Тогда на этом множестве справедливо равенство

Доказательствовытекает из цепочки тождеств

Замечание 2. Операция интегрирования по частям применяется к интегралам вида

( многочлен степени ).

При этом в интегралах типа 1 для получения дифференциала надо ввести под знак дифференциала трансцендентную функцию а в интегралах типа 2 под знак дифференциала надо ввести многочлен Например,

4.Выделение полного квадрата

При интегрировании алгебраических дробей будет использоваться операция выделения полного квадрата. Продемонстрируем ее на примере интеграла

 

При интегрировании алгебраических дробей будет использоваться операция выделения полного квадрата. Продемонстрируем ее на примере интеграла

 



Дата добавления: 2016-06-05; просмотров: 1388;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.