Общие подходы к управлению цепной реакцией деления в ядерном реакторе
Рассмотрим механизм цепной реакции деления. При делении тяжелых ядер под действием нейтронов возникают новые нейтроны. Например, при каждом делении ядра урана 92U235 в среднем возникает 2.4 нейтрона. Часть этих нейтронов снова может вызвать деление ядер. Такой лавинообразный процесс называется цепной реакцией.
В делящейся среде конечных размеров часть нейтронов будет уходить из активной зоны наружу. Поэтому коэффициент k зависит еще от вероятности Р для нейтрона не уйти из активной зоны. По определению
k=k∞ P
Величина Р зависит от состава активной зоны, ее размеров, формы, а также от того, в какой степени окружающее активную зону вещество отражает нейтроны.
С возможностью ухода нейтронов за пределы активной зоны связаны важные понятия критической массы и критических размеров. Критическим размером называется размер активной зоны, при котором k = 1. Критической массой называется масса активной зоны критических размеров. Очевидно, что при массе ниже критической цепная реакция не идет, даже если > 1. Наоборот, заметное превышение массы над критической ведет к неуправляемой реакции - взрыву.
Если в первом поколении имеется N нейтронов, то в n-м поколении их будет Nkn. Поэтому
· при k = 1 цепная реакция идет стационарно, реакции называется критическим;
· при k < 1 реакция гаснет, – подкритическим;
· при k > 1 интенсивность реакции нарастает, – надкритическим.
Время жизни одного поколения нейтронов сильно зависит от свойств среды и имеет порядок от 10–4 до 10–8 с. Из-за малости этого времени для осуществления управляемой цепной реакции надо с большой точностью поддерживать равенство k = 1. Посмотрим, какими факторами определяются коэффициенты k∞ и k.
Первой величиной, определяющей k∞(или k), является среднее число нейтронов, испускаемых в одном акте деления. Число зависит от вида горючего и от энергии падающего нейтрона. В табл. 1 приведены значения основных изотопов ядерной энергетики как для тепловых, так и для быстрых (Е = 1 МэВ) нейтронов.
При столкновении нейтрона с тяжелым ядром всегда возможен радиационный захват нейтрона (n,γ). Этот процесс будет конкурировать с делением и тем самым уменьшать коэффициент размножения. Отсюда вытекает, что второй физической величиной, влияющей на коэффициенты k∞, k, является вероятность деления при захвате нейтрона ядром делящегося изотопа. Эта вероятность для моноэнергетических нейтронов, очевидно, равна
,
где nf, nγ – соответственно сечения деления и радиационного захвата. Для одновременного учета как числа нейтронов на акт деления, так и вероятности радиационного захвата вводится коэффициентη, равный среднему числу вторичных нейтронов на один захват нейтрона делящимся ядром.
η = ,
величина η зависит от вида горючего и от энергии нейтронов. Значения η для важнейших изотопов для тепловых и быстрых нейтронов приведены в той же табл. 1. Величина η является важнейшей характеристикой ядер горючего. Цепная реакция может идти только при η > 1. Качество горючего тем выше, чем больше значение η.
Таблица. Значения ν, η для делящихся изотопов
Ядро | 92U233 | 92U235 | 94Pu239 | |
Тепловые нейтроны (Е = 0.025 эВ) | ν | 2.52 | 2.47 | 2.91 |
η | 2.28 | 2.07 | 2.09 | |
Быстрые нейтроны (E = 1 МэВ) | ν | 2.7 | 2.65 | 3.0 |
η | 2.45 | 2.3 | 2.7 |
Качество ядерного горючего определяется его доступностью и коэффициентом η. В природе встречаются только, три изотопа, которые могут служить ядерным топливом или сырьем для его получения. Это изотоп тория 232Th и изотопы урана 238U и 235U. Из них первые два цепной реакции не дают, но могут быть переработаны в изотопы, на которых реакция идет. Изотоп 235U сам дает цепную реакцию. В земной коре тория в несколько раз больше, чем урана. Природный торий практически состоит только из одного изотопа 232Th. Природный уран в основном состоит из изотопа238U и только на 0.7% из изотопа 235U.
На практике крайне важен вопрос об осуществимости цепной реакции на естественной смеси изотопов урана, в которой на одно ядро 235U приходится 140 ядер 238U. Покажем, что на естественной смеси медленная реакция возможна, а быстрая – нет. Для рассмотрения цепной реакции на естественной смеси удобно ввести новую величину – среднее сечение поглощения нейтрона, отнесенное к одному ядру изотопа 235U. По определению
где верхний индекс указывает массовое число соответствующего изотопа урана. Вероятность того, что нейтрон, поглотившись в естественной смеси, вызовет деление, равна
(9.1.2) |
Умножив эту вероятность на число ν нейтронов, вылетающих в среднем при делении одного ядра, мы получим коэффициент ηест для естественной смеси:
Для тепловых нейтронов = 2.47, = 580 барн, = 112 барн, = 2.8 барн. Мы получим, что для медленных нейтронов в естественной смеси
ηест(медл.)=1,32>1
Это означает, что 100 тепловых нейтронов, поглотившись в естественной смеси, создадут 132 новых нейтрона. Отсюда прямо следует, что цепная реакция на медленных нейтронах в принципе возможна на естественном уране.
Для быстрых нейтронов ν = 2.65, 2 барн, 0.1 барн. Если учитывать деление только на изотопе 235U, получим
η235(быстр.)=0,3
Но надо еще учесть, что быстрые нейтроны с энергиями больше 1 МэВ могут с заметной относительной интенсивностью делить и ядра изотопа 238U, которого в естественной смеси очень много. Для деления на 238U коэффициент равен примерно 2.5. В спектре деления примерно 60% нейтронов имеют энергии выше эффективного порога 1.4 МэВ деления на 238U. Но из этих 60% только один нейтрон из 5 успевает произвести деление, не замедлившись до энергии ниже пороговой за счет упругого и особенно неупругого рассеяния. Отсюда для коэффициента 238(быстр.) получается оценка
η238(быстр.) = 0.6ν238/5 ≈ 0.3. |
Полный коэффициент ηест для быстрой реакции равен сумме:
ηест(быстр.) = η235(быстр.) + η238(быстр.) ≈ 0.6 < 1. |
Таким образом, на быстрых нейтронах цепная реакция в естественной смеси (235U + 238U) идти не может. Экспериментально установлено, что для чистого металлического урана коэффициент размножения достигает значения единицы при обогащении 5.56%. Практически оказывается, что реакцию на быстрых нейтронах можно поддерживать лишь в обогащенной смеси, содержащей не меньше 15% изотопа 235U.
Сравним цепные реакции деления на тепловых и быстрых нейтронах.
У тепловых нейтронов сечения захвата велики и сильно меняются при переходе от одного ядра к другому. На ядрах некоторых элементов (например, на кадмии) эти сечения в сотни и более раз превосходят сечения на 235U. Поэтому к активной зоне установок на тепловых нейтронах предъявляются требования высокой чистоты по отношению к некоторым примесям.
Для быстрых нейтронов все сечения захвата малы и не так уж сильно отличаются друг от друга, так что проблемы высокой чистоты материалов не возникает. Другим преимуществом быстрых реакций является более высокий коэффициент воспроизводства.
Важное отличительное свойство тепловых реакций состоит в том, что в активной зоне топливо значительно сильнее разбавлено, т. е. на одно ядро топлива приходится значительно больше не участвующих в делении ядер, чем в быстрой реакции. Например, в тепловой реакции на естественном уране на ядро топлива 235U приходится 140 ядер сырья 238U, а в быстрой реакции на ядро 235U может приходиться не более пяти-шести ядер 238U. Разбавленность топлива в тепловой реакции приводит к тому, что одна и та же энергия в тепловой реакции выделяется в значительно большем объеме вещества, чем в быстрой. Тем самым из активной зоны тепловой реакции легче отводить тепло, что позволяет осуществлять эту реакцию с большей интенсивностью, чем быструю.
Для осуществления цепной реакции на медленных нейтронах в активную зону вводят специальные вещества – замедлители, которые превращают нейтроны деления в тепловые. На практике цепная реакция на медленных нейтронах осуществляется на естественном или слегка обогащенном изотопом235U уране. Присутствие большого количества изотопа 238U в активной зоне усложняет процесс замедления и делает необходимым предъявление высоких требований к качеству замедлителя. Жизнь одного поколения нейтронов в активной зоне с замедлителем приближенно можно разбить на две стадии: замедление до тепловых энергий и диффузия с. тепловыми скоростями до поглощения. Для того чтобы основная часть нейтронов успела замедлиться без поглощения, необходимо выполнение условия
σупр/σзахв >> n, |
где σупр, σзахв – усредненные по энергиям сечения соответственно упругого рассеяния и захвата, а n – число столкновений нейтрона с ядрами замедлителя, необходимое для достижения тепловой энергии. Число n быстро растет с ростом массового числа замедлителя. Для урана 238U число n имеет порядок нескольких тысяч. А отношение σупр/σзахв для этого изотопа даже в сравнительно благоприятной области энергий быстрых нейтронов не превышает 50. На естественном уране без посторонних примесей цепную реакцию осуществить нельзя: на быстрых нейтронах реакция не идет из-за малости коэффициента η, а медленные нейтроны не могут образоваться, Для того чтобы избежать резонансного захвата нейтрона, надо использовать для замедления очень легкие ядра, на которых замедление идет “крупными шагами”, что резко увеличивает вероятность благополучного “проскакивания” нейтрона через резонансную область энергий. Наилучшими элементами-замедлителями являются водород, дейтерий, бериллий, углерод. Поэтому используемые на практике замедлители в основном сводятся к тяжелой воде, бериллию, окиси бериллия, графиту, а также обычной воде, которая замедляет нейтроны не хуже тяжелой воды, но поглощает их в гораздо большем количестве. Замедлитель должен быть хорошо очищен. Заметим, что для осуществления медленной реакции замедлителя должно быть в десятки, а то и в сотни раз больше, чем урана, чтобы предотвратить резонансные столкновения нейтронов с ядрами 238U.
Величины p и f зависят не только от относительного количества замедлителя, но и от геометрии его размещения в активной зоне. Активная зона, состоящая из однородной смеси урана и замедлителя, называется гомогенной, а система их чередующихся блоков урана и замедлителя называется гетерогенной. Качественно гетерогенная система отличается тем, что в ней образовавшийся в уране быстрый нейтрон успевает уйти в замедлитель, не достигнув резонансных энергий. Дальнейшее замедление идет уже в чистом замедлителе. Это повышает вероятность p избежать резонансного захвата pгет > pгом.
С другой стороны, наоборот, став в замедлителе тепловым, нейтрон должен для участия в цепной реакции продиффундировать, не поглотившись в чистом замедлителе, до его границы. Поэтому коэффициент теплового использования f в гетерогенной среде ниже, чем в гомогенной: fгет < fгом.
Для оценки коэффициента размножения k∞ теплового реактора используется приближенная формула четырех сомножителей:
k∞=ηpfε
Первые три сомножителя мы уже рассматривали ранее. Величина ε называется коэффициентом размножения на быстрых нейтронах. Этот коэффициент вводится для того, чтобы учесть, что часть быстрых нейтронов может произвести деление, не успев замедлиться. По своему смыслу коэффициент ε всегда превышает единицу. Но это превышение обычно невелико. Типичным для тепловых реакций является значение ε = 1.03. Для быстрых реакций формула четырех сомножителей неприменима, так как каждый коэффициент зависит от энергии и разброс по энергиям при быстрых реакциях очень велик.
Поскольку величина η определяется видом топлива, а величина ε для медленных реакций почти не отличается от единицы, то качество конкретной активной среды определяется произведением pf. Так, преимущество гетерогенной среды перед гомогенной количественно проявляется в том, что, например, в системе, в которой на одно ядро естественного урана приходится 215 ядер графита, произведение pf равно 0,823 для гетерогенной среды и 0,595 для гомогенной. А так как для естественной смеси η = 1,34, то мы и получим, что для гетерогенной среды k∞ > 1, а для гомогенной k∞ < 1.
Захват нейтронов не участвующими в цепной реакции ядрами снижает интенсивность реакции, но может быть полезным в отношении образования новых делящихся изотопов. Так, при поглощении нейтронов изотопов урана 238U и тория 232Th образуются (через два последовательных b-распада) изотопы плутония 239Pu и урана 233U, являющиеся ядерным горючим:
, |
. |
Эти две реакции открывают реальную возможность воспроизводства ядерного горючего в процессе течения цепной реакции. В идеальном случае, т. е. при отсутствии ненужных потерь нейтронов, на воспроизводство может идти в среднем – 1 нейтронов на каждый акт поглощения нейтрона ядром горючего.
Дата добавления: 2021-05-28; просмотров: 449;