ВЫСОКОЛЕГИРОВАННЫХ АУСТЕНИТНЫХ СТАЛЕЙ И СПЛАВОВ


9.1. СОСТАВ И СВОЙСТВА СТАЛЕЙ

Высоколегированные аустенитные стали имеют повышенное содер­жание основных легирующих элементов - хрома и никеля (обычно не ниже 16 и 7 % соответственно), придающих им соответствующую струк­туру и необходимые свойства (табл. 9.1). Для сокращения высоколегиро­ванные стали можно обозначать в соответствии с содержанием основных легирующих элементов цифрами, например 18-8, 25-20 и др. Первая цифра обозначает содержание хрома, вторая - никеля.

Никель - дефицитный и дорогой легирующий элемент и поэтому в тех случаях, когда условия работы конструкции позволяют, используют стали с пониженным его содержанием или безникелевые хромистые ста­ли. В сплавах на железоникелевой основе содержание никеля еще выше, чем в хромоникелевых сталях. В никелевых сплавах никель служит осно­вой, а железо - легирующей присадкой. Эти сплавы благодаря своим свойствам находят применение в ответственных конструкциях, работаю­щих в сложных и специфических условиях.

Высоколегированные стали и сплавы по сравнению с менее легиро­ванными обладают высокой хладостойкостью, жаропрочностью, корро­зионной стойкостью и жаростойкостью. Эти важнейшие материалы для химического, нефтяного, энергетического машиностроения и ряда других отраслей промышленности используют при изготовлении конструкций, работающих в широком диапазоне температур: от отрицательных до поло­жительных. Несмотря на общие высокие свойства высоколегированных сталей, соответствующий подбор состава легирования определяет их ос­новное служебное назначение. В соответствии с этим их можно разде­лить на три группы: коррозионно-стойкие, жаропрочные и жаростойкие (окалиностойкие). Благодаря их высоким механическим свойствам при отрицательных температурах высоколегированные стали и сплавы при­меняют в ряде случаев и как хладостойкие.

 

9.1. Состав некоторых марок высоколегированных аустенитных и

аустенитно-ферритных сталей и сплавов по ГОСТ 5632-72 (в ред. 1989 г.),

применяемых для изготовления сварных конструкции, %

ТЕХНОЛОГИЯ СВАРКИ АУСТЕНИТНЫХ СТАЛЕЙ

Коррозионно-стойкие стали при соответствующем легировании и термообработке обладают высокой коррозионной стойкостью при ком­натных и повышенных до 800 °С температурах как в атмосферной и газо­вой среде, так и в чистых и водных растворах кислот и щелочей, жидко-металлических средах и т.д. Характерное отличие этих сталей - пони­женное содержание углерода, обычно не превышающее 0,12 %, оказы­вающее решающее влияние на стойкость их к межкристаллитной корро­зии (МКК). Благодаря этим свойствам их используют при изготовлении трубопроводов и аппаратов для химической и нефтяной промышленности.

Жаропрочные стали и сплавы обладают высокими механическими свойствами при повышенных температурах и способностью сохранять их в данных условиях в течение длительного времени. Для придания этих свойств сталям и сплавам их обычно легируют элементами-упрочни-телями молибденом и вольфрамом (до 7 % каждого). Важной легирую­щей присадкой, вводимой в некоторые стали и сплавы, является бор. В ряде случаев к этим металлам предъявляется требование и высокой жаростойкости.

Одна из основных областей применения этих сталей - энергетиче­ское машиностроение (трубопроводы, детали и корпуса газовых и паро­вых турбин и т.д.), где рабочие температуры достигают 750 °С и выше. Жаростойкие стали и сплавы обладают стойкостью против химического разрушения поверхности в газовых средах при температурах до 1100 ... 1150 °С. Обычно их используют для деталей слабонагруженных (нагре­вательные элементы, печная арматура, газопроводные системы и т.д.). Высокая окалиностойкость этих сталей и сплавов достигается легирова­нием их алюминием (до 2,5 %) и вольфрамом (до 7 %). Эти легирующие элементы и кремний способствуют созданию прочных и плотных окси­дов на поверхности деталей, предохраняющих металл от непосредствен­ного контакта с газовой средой.

После соответствующей термообработки высоколегированные стали и сплавы обладают высокими прочностными и пластическими свойства­ми (табл. 9.2). В отличие от углеродистых при закалке эти стали приобре­тают повышенные пластические свойства. Структуры высоколегирован­ных сталей очень разнообразны и зависят в основном от их химического состава, т.е. содержания основных элементов: хрома (ферритизатора) и никеля (аустенитизатора). На структуру влияет также содержание и дру­гих легирующих элементов-ферритизаторов (Si, Mo, Ti, Al, Nb, W, V) и аустенитизаторов (С, Co, Ni, Cu, Nb, B).

СОСТАВ И СВОЙСТВА СТАЛЕЙ

9.2. Механические свойства некоторых марок

высоколегированных аустенитных и аустенитно-ферритных сталей и сплавов

ТЕХНОЛОГИЯ СВАРКИ АУСТЕНИТНЫХ СТАЛЕЙ

Для приближенного определения характера структуры обычно поль­зуются диаграммой Шеффлера, предварительно подсчитав эквивалент­ные содержания никеля и хрома. На структуру этих сталей оказывает влияние также термообработка, пластическая деформация и другие фак­торы. Поэтому положение фазовых областей на диаграммах состояния определено в виде псевдобинарных разрезов тройных систем, обычно Fe-Cr-Ni с углеродом.

Рассмотрим фазовые области для одной из таких систем (штриховая линия на рис. 9.1) при содержании 0,05 % С. При очень медленном охла­ждении и затвердевании (точка / на линии ликвидус) из расплава вначале начинают выпадать кристаллы хромоникелевого феррита, имеющего ре­шетку 6-железа, а по мере охлаждения - и кристаллы хромоникелевого аустенита, имеющего решетку γ-железа. После затвердевания всего рас­плава (температура ниже точки 2 на линии солидус) сталь имеет аусте-нитно-ферритную структуру. При дальнейшем охлаждении в точке 3 происходит превращение δ → γ , и сталь приобретает аустенитную струк­туру.

Рис. 9.1. Псевдобинарная диаграмма состояния в зависимости от содержания углерода для сплава 18 % Сг, 8 % Ni, 74 % Fe

СОСТАВ И СВОЙСТВА СТАЛЕЙ

Углерод в аустенитно-ферритной и аустенитной сталях при темпе­ратурах выше линии SE (выше точки 4) находится в твердом растворе в виде фаз внедрения. Медленное охлаждение стали ниже точки 4 приво­дит к выделению углерода из твердого раствора в виде химического со­единения - карбидов хрома типа Сr23С6, располагающихся преимущест­венно по границам зерен. Дальнейшее охлаждение ниже точки 5 способ­ствует выпадению по границам зерен вторичного феррита. Таким обра­зом, сталь при медленном охлаждении при комнатной температуре имеет аустенитную структуру со вторичными карбидами и ферритом.

В зависимости от скорости охлаждения с температур, лежащих вы­ше линии SE, углерод частично или полностью выделяется из твердого раствора в виде карбидов. Этот процесс оказывает решающее влияние на свойства сталей. При быстром охлаждении (закалке) распад твердого раствора не успевает произойти, и аустенит фиксируется в пересыщен­ном и неустойчивом состоянии. Количество выпавших карбидов хрома, помимо скорости охлаждения, зависит и от количества углерода в стали. При его содержании менее 0,02 ... 0,03 %, т.е. ниже предела его раство­римости в аустените, весь углерод остается в твердом растворе.

Ускоренное охлаждение стали в некоторых композициях ау-стенитных сталей может привести к фиксации в их структуре первичного 5-феррита, в некоторых случаях необходимого с точки зрения предупре­ждения горячих трещин. Холодная деформация, в том числе и наклеп закаленной стали, в которой аустенит зафиксирован в неустойчивом со­стоянии, способствует превращению γ → α. Феррит, располагаясь тонкими прослойками по границам аустенитных зерен, блокирует плоскости скольжения и упрочняет сталь (рис. 9.2). Упрочнение стали тем выше, чем ниже температура деформации. Обычно тонколистовые хромонике-левые стали в состоянии поставки имеют повышенные прочностные и по­ниженные пластические свойства. Это объясняется их повышенной дефор­мацией при прокатке и пониженной температурой окончания прокатки.

Если сталь, в которой не произошло выпадения карбидов и углерод зафиксирован в твердом растворе, медленно нагревать, подвижность атомов увеличивается. В соответствии с этим увеличивается и способ­ность их к диффузии и восстановлению равновесия в твердом растворе, в котором аустенит зафиксирован в перенасыщенном и неустойчивом со­стоянии, что приводит к образованию и выделению карбидов из перена­сыщенного твердого раствора. Этот процесс начинается при температуре 400 ... 500 °С, но вследствие малой скорости диффузии идет медленно с образованием карбидов преимущественно по границам зерен.

ТЕХНОЛОГИЯ СВАРКИ АУСТЕНИТНЫХ СТАЛЕЙ

Рис. 9.2. Изменение механических свойств

хромоникелевой стали (18 % Сг; 8 % Ni; 0,17 % С)

в зависимости от степени холодной деформации (обжатия)

Вследствие того что скорость диффузии хрома значительно ниже, чем углерода, связываемый в карбид хром извлекается из ближайших к границе областей зерна, т.е. происходит местное обеднение твердого рас­твора хромом. При работе в коррозионной среде эти участки зерна рас­творяются, что приводит к нарушению связи между отдельными зерна­ми. Этот процесс называется межкристаллитной коррозией (МКК).

При температурах 600 ... 700 °С скорость диффузии более высокая и образование карбидов идет быстрее, в большем количестве и более крупных. При температуре 800 ... 900 °С карбиды образуются еще быст­рее и коагулируют. Ввиду достаточно высокой скорости диффузии хром, связываемый в карбид, извлекается из более глубоких областей зерна, и местное обеднение границ зерна хромом уменьшается. При температурах выше 900 °С (выше температур линии SE) наряду с коагуляцией карби­дов начинается обратный процесс их растворения с переходом углерода в твердый раствор и образованием однородной массы аустенита. Быстрое охлаждение этой стали (закалка) опять фиксирует структуру аустенита в

СОСТАВ И СВОЙСТВА СТАЛЕЙ

перенасыщенном и неустойчивом состоянии с углеродом, находящимся в твердом растворе. Как видно из рис. 9.1, температура закалки для полу­чения подобной структуры (линия SE) тем выше, чем больше содержание углерода в стали. Подобная термообработка называется закалкой на го­могенный твердый раствор (аустенитизация) и для сталей типа 18-8 про­водится с температур 1050 ... 1100 °С.

Межкристаллитная коррозия вызывается местным обеднением хро­мом металла зерна возле границы, вследствие более низкой скорости диффузии хрома по сравнению с углеродом, при температурах ниже 900 °С. Однако если сталь при этих температурах выдерживать достаточно дли­тельное время, несмотря на малую скорость диффузии хрома, его кон­центрация по объему зерна (периферийная и центральная) будет вырав­ниваться и склонность стали к МКК уменьшится. Такая термообработка называется стабилизирующим отжигом. Его проводят обычно при темпе­ратуре 850 ... 900 СС в течение 2 ... 3 ч.

В целом зависимость МКК от времени и температуры можно пред­ставить схемой на рис. 9.3. Левая ветвь схемы (кривая /) показывает тем-пературно-временные условия появления в швах склонности к МКК. При температурах до 650 °С скорость образования карбидов хрома воз­растает при небольшой скорости диффузии хрома. В результате время выдержки металла при рассматриваемой температуре до появления МКК сокращается и при температуре 650 °С (tкр) может достигать нескольких минут.

Рис. 9.3. Зависимость появления склонности к МКК металла швов на аустенитной стали' от температуры и времени

ТЕХНОЛОГИЯ СВАРКИ АУСТЕНИТНЫХ СТАЛЕЙ

Повышение температуры, увеличивая скорость диффузии хрома, уменьшает местное обеднение границ зерен хромом и склонность швов к МКК. Выдержка стали в рассматриваемом интервале температур в тече­ние ?им и более, приводя к диффузионному выравниванию содержания хрома по объему зерна, способствует приобретению металлом повторной стойкости к МКК (кривая 2). Уменьшение в стали содержания углерода, легирование ее более сильными, чем хром, карбидообразователями (ти­тан, ниобий и др.) сдвигает вправо кривую / начала появления склонно­сти металла к МКК. Процессы, протекающие при образовании карбидов, влияют не только на появление такой склонности, но и сильно изменяют механические свойства сталей при комнатных и высоких температурах.

Изменение в стали содержания легирующих элементов влияет на положение фазовых областей. Основными легирующими элементами в рассматриваемых сталях служат хром и никель. В зависимости от их соот­ношения стали иногда разделяют на стали с малым (% Ni / % Сг ≤ 1) и боль­шим запасом аустенитности (% Ni / % Сг > 1).

Титан, ниобий, вольфрам и ванадий - карбидообразователи. Поэто­му в стали могут образовываться не только карбиды хрома, но и карбиды этих элементов (TiC, NbC, VC). При определенных содержаниях [Ti ≥ (С - 0,02) • 5 и Nb ≥ 10С] весь свободный, выше предела его раство­римости (0,02 %), углерод может выделиться не в виде карбидов хрома, а в виде карбидов титана или ниобия. Выпадение карбидов повышает прочностные и понижает пластические свойства сталей.

Упрочнение, связанное с выделением карбидов, зависит от степени дисперсности - оно увеличивается с уменьшением размеров карбидов. Это свойство карбидов используют для дисперсионного упрочнения жа­ропрочных сталей, проводимого обычно в комплексе с интерметаллид-ным упрочнением [упрочняющие частицы-интерметаллиды Ni3Ti, Ni3(Al, Ti), Fe2W и др.]. К интерметаллидным соединениям относят и а-фазу, которая образуется в хромоникелевых сталях при длительном нагреве или медленном охлаждении при температурах ниже 900 ... 950 °С. Она обладает ограниченной растворимостью в α- и γ-твердых растворах и, выделяясь преимущественно по границам зерен, резко снижает пла­стические свойства и ударную вязкость металла.

Повышенные концентрации в стали хрома (16 ... 25 %) и элементов, способствующих образованию феррита (молибдена, кремния и др.), вы-

ОСНОВНЫЕ СВЕДЕНИЯ О СВАРИВАЕМОСТИ

зывают образование при температурах 700 ... 850 °С а-фазы. Выделение этой фазы происходит преимущественно с образованием промежуточной фазы феррита (γ → α → σ) или преобразованием 5-феррита (δ → σ). Од­нако возможно ее выделение и непосредственно из твердого раствора (γ → σ). Холодная деформация, приводя к появлению дополнительных плоскостей сдвига, увеличивает количество выделившейся σ-фазы. Вы­деление σ-фазы резко снижает служебные характеристики жаропрочных и жаростойких сталей.

9.2. ОСНОВНЫЕ СВЕДЕНИЯ О СВАРИВАЕМОСТИ

Свариваемость рассматриваемых сталей и сплавов затрудняется многокомпонентностью их легирования и разнообразием условий экс­плуатации сварных конструкций (коррозионная стойкость, жаростой­кость или жаропрочность). Общей сложностью сварки является преду­преждение образования в шве и околошовной зоне кристаллизационных горячих трещин, имеющих межкристаллитный характер, наблюдаемых в виде мельчайших микронадрывов и трещин. Горячие трещины могут возникнуть и при термообработке или работе конструкции при повышен­ных температурах. Образование горячих трещин наиболее характерно для крупнозернистой структуры металла шва, особенно выраженной в многослойных швах, когда кристаллы последующего слоя продолжают кристаллы предыдущего слоя.

Концентрационное и термическое переохлаждение способствует развитию дендритной или микроскопической ликвации. В аустенитных швах направленность столбчатых кристаллов выражена наиболее четко. Повышенное сечение и поэтому малая поверхность столбчатых кристал­лов способствуют образованию межкристаллитных прослоек повышен­ной толщины, что и увеличивает вероятность образования горячих тре­щин. Применение методов, способствующих измельчению кристаллов и дезориентации структуры, утоныыая межкристаллитные прослойки, не­сколько повышает стойкость швов против горячих трещин.

Один из таких методов - получение швов, имеющих в структуре не­которое количество первичного δ-феррита. Положительное действие феррита в аустенитно-ферритных швах на предупреждение образования в них горячих трещин связано с характером процесса первичной кристал-

ТЕХНОЛОГИЯ СВАРКИ АУСТЕНИТНЫХ СТАЛЕЙ

лизации металла сварочной ванны. Одновременное выпадение из жидкой фазы кристаллов аустенита и первичного δ-феррита приводит к измель­чению и дезориентации структуры, т.е. уменьшению сечения столбчатых кристаллов и утонению межкристаллитных прослоек, разделенных уча­стками первичного δ-феррита. В результате вероятность образования го­рячих трещин по местам расположения прослоек уменьшается.

Элементы, способствующие ферритизации металла, оказывают и обессеривающее действие на сварочную ванну, уменьшая количество легкоплавкой сульфидной эвтектики. Благоприятное действие δ-феррита может быть объяснено и большей растворимостью в нем примесей, уменьшающей их ликвацию. Получение аустенитно-ферритных швов достигается их дополнительным легированием ферритообразующими элементами, такими как хром, кремний, алюминий, молибден и др. В из­делиях, работающих как коррозионно-стойкие при температурах до 400 °С, допускается содержание феррита до 20 ... 25 %. В швах на жаро­прочных и жаростойких сталях, работающих при более высоких темпера­турах, возможно образование σ-фазы с соответствующим ухудшением служебных характеристик шва. С целью предупреждения сигматизации швов количество δ-феррита в швах на жаропрочных и жаростойких ста­лях ограничивают 4 ... 5 %.

В сталях с большим запасом аустенитности получение швов с аустенитно-ферритной структурой затруднено необходимостью легирова­ния их повышенным количеством ферритизаторов. Возможность предот­вращения в швах на них, а также на аустенитно-ферритных сталях горя­чих трещин достигается ограничением содержания в швах вредных (фосфора, серы) и ликвирующих примесей, образующих легкоплавкие эвтектики, располагающиеся на завершающейся стадии кристаллизации по границам столбчатых кристаллов. Это достигается применением сва­рочных материалов, минимально засоренных вредными и ликвирующими элементами, например электродных проволок, изготовленных из сталей вакуумной выплавки, электрошлакового переплава и т.д. Ограничивается также проплавление основного металла.

В некоторых случаях повышение стойкости швов против горячих трещин, наоборот, достигается повышением ликвирующих примесей до концентраций, обеспечивающих получение при завершении кристалли­зации сплошной пленки легкоплавкой эвтектики на поверхности кри-

ОСНОВНЫЕ СВЕДЕНИЯ О СВАРИВАЕМОСТИ

сталлита. Это может быть достигнуто легированием стали бором (0,3 ... 1,5 %). Повышенная литейная усадка и значительные растягивающие напряжения, действующие при затвердевании на сварочную ванну, также способствуют образованию горячих трещин. Снижение действия силово­го фактора (ограничение силы тока, заполнение разделки валиками не­большого сечения, рациональная конструкция соединения и др.) способ­ствует предупреждению горячих трещин.

Помимо сложности получения на аустенитных высоколегированных сталях и сплавах швов без горячих трещин имеются и другие трудности, обусловленные спецификой их использования. К сварным соединениям на жаропрочных сталях предъявляется требование сохранения в течение длительного времени высоких механических свойств при повышенных температурах. Большие скорости охлаждения металла шва при сварке приводят к фиксации неравновесных по отношению к рабочим темпера­турам структур. Во время эксплуатации при температурах выше 350 °С в результате диффузионных процессов в стали появляются новые струк­турные составляющие, приводящие обычно к снижению пластических свойств металла шва.

Термическое старение при температурах 350 ... 500 °С может при­вести к появлению 475°-ной хрупкости. Выдержка аустенитно-феррит­ных швов при температуре 500 ... 650 °С приводит к старению в основ­ном за счет выпадения карбидов. Одновременно идет процесс образова­ния σ-фазы. Легирование сталей титаном и ниобием приводит к диспер­сионному упрочнению стали за счет образования их прочных карбидов. Являясь ферритизаторами, титан и ниобий, способствуя образованию в шве ферритной составляющей, увеличивают количество σ-фазы в метал­ле. Выдержки при температуре 700 ... 850 °С значительно интенсифици­руют образование σ-фазы с соответствующим охрупчиванием металла при более низких температурах и снижением предела ползучести при высоких температурах. При этих температурах возрастает роль и интер-металлидного упрочнения за счет образования, в частности, интерметал-лидных фаз железа с титаном и ниобием.

В чисто аустенитных швах в процессах теплового старения ведущее место занимают процессы карбидного и интерметаллидного упрочнения. Одно из эффективных средств уменьшения склонности сварных соедине­ний жаростойких и жаропрочных сталей к охрупчиванию в результате

ТЕХНОЛОГИЯ СВАРКИ АУСТЕНИТНЫХ СТАЛЕЙ

выпадения карбидов - снижение в основном металле и металле шва со­держания углерода. Наклеп, способствуя увеличению в шве содержания ферритной фазы, усиливает возможность их охрупчивания.

Ввиду высокого коэффициента теплового расширения суммарная внутренняя пластическая деформация металла шва и околошовной зоны при сварке высоколегированных сталей выше, чем в низколегированных сталях. В результате при сварке многослойных швов (многократная пла­стическая деформация), жестких соединений и т.п. околошовная зона и нижние слои металла шва могут заметно упрочняться. Самонаклеп также увеличивает количество ферритной фазы, а значит, и вероятность охруп­чивания (сигматизации) швов.

В зоне термического влияния некоторых жаропрочных аусте-нитных сталей под действием термического цикла сварки снижаются пластические и прочностные свойства, что может повести к образованию в этой зоне трещин. Подобные изменения свойств основного металла вызываются развитием диффузионных процессов, приводящих к повы­шенной концентрации в металле околошовной зоны элементов (углерода, кислорода и др.), которые совместно с вредными примесями могут обра­зовывать легкоплавкие эвтектики. При длительной эксплуатации в этой зоне могут выделяться мелкодисперсные карбиды и интерметаллиды, коагуляция которых приводит также к охрупчиванию металла. При свар­ке этих сталей для предупреждения образования горячих трещин в шве часто получают металл шва, по составу отличающийся от основного и имеющий двухфазную структуру.

В процессе высокотемпературной эксплуатации происходит карбид­ное и интерметаллидное упрочнение металла шва и соответствующее снижение его пластических свойств, что приводит к локализации в око­лошовной зоне деформаций и образованию в ней трещин. Этому способ­ствует и высокий уровень остаточных сварочных напряжении в сумме с рабочими напряжениями. Предотвращение подобных локальных разру­шений достигается термообработкой - аустенитизацией при температуре 1050 ... 1100 °С для снятия остаточных сварочных напряжений и самона­клепа и придания сварному соединению более однородных свойств. В ряде случаев аустенитизация сопровождается последующим стабили­зирующим отжигом при температуре 750 ... 800 °С для получения отно­сительно стабильных структур за счет выпадения карбидной и интерме-таллидной фаз.

ОСНОВНЫЕ СВЕДЕНИЯ О СВАРИВАЕМОСТИ

При сварке высокопрочных сталей в околошовной зоне возможно образование холодных трещин. Поэтому до сварки рекомендуется их ау­стенитизация для получения высоких пластических свойств металла, а после сварки - упрочняющая термообработка. Подбор химического со­става металла шва, получение в нем благоприятных структур за счет вы­бора режима сварки и термообработки, снижение уровня остаточных на­пряжений за счет уменьшения жесткости сварных соединений или термо­обработки - основные пути предотвращения охрупчивания сварных соеди­нений и образования в них холодных трещин. Предварительный или сопут­ствующий подогрев до температуры 350 ... 450 °С служит этой же цели.

При сварке жаростойких сталей под воздействием температуры в металле швов могут наблюдаться такие же структурные изменения, как и при сварке жаропрочных сталей. Высокая коррозионная стойкость жаро­стойких сталей в газовых средах при повышенных температурах опреде­ляется возможностью образования и сохранения на их поверхности прочных и плотных пленок оксидов. Это достигается легированием их хромом, кремнием, алюминием. Поэтому во многих случаях необходимая жаростойкость сварного соединения достигается максимальным прибли­жением состава шва к составу основного металла. Во многих случаях к сварным соединениям жаростойких сталей предъявляется требование стойкости к газовой межкристаллитной коррозии.

Большинство жаростойких сталей и сплавов имеет большой запас аустенитности и поэтому при нафеве и охлаждении при сварке фазовых превращений не претерпевает, кроме карбидного и интерметаллидного дисперсионного твердения. При сварке этих сталей возможно образова­ние холодных трещин в шве и околошовной зоне, предупреждение кото­рых в ряде случаев может быть достигнуто предварительным подофевом сталей до температуры 250 ... 550 °С.

Высоколегированные аустенитные стали и сплавы наиболее часто используют как коррозионно-стойкие. Основное требование, которое в этом случае предъявляется к сварным соединениям, - стойкость к раз­личным видам коррозии. Межкристаллитная коррозия может развиваться в металле шва и основном металле у линии сплавления (ножевая корро­зия) или на некотором удалении от шва (рис. 9.4). Механизм развития этих видов коррозии одинаков. Однако причины возникновения назван­ных видов межкристаллитной коррозии различны.

ТЕХНОЛОГИЯ СВАРКИ АУСТЕНИТНЫХ СТАЛЕЙ

Рис. 9.4. Схемы межкристаллитной коррозии сварных соединений аустенитных сталей:

а - в основном металле; б - в металле шва; в - ножевая коррозия

Межкристаллитная коррозия в металле шва (см. рис. 9.4, б) возника­ет в результате выделения под действием термического цикла сварки из аустенита карбидов хрома, приводящего к местному обеднению границ зерен хромом. Основная причина этого - повышенное содержание в ме­талле шва углерода и отсутствие или недостаточное содержание титана или ниобия. Неблагоприятный термический цикл сварки - длительное пребывание металла шва в интервале критических температур (t > tкр, рис. 9.3) приводит к появлению склонности к межкристаллитной корро­зии шва. Шов может потерять стойкость против межкристаллитной кор­розии в результате воздействия критических температур при эксплуата­ции изделия. Аустенитно-ферритные швы с дезориентированной струк­турой имеют и повышенную стойкость против ММК по сравнению с ау-стенитными.

Увеличение протяженности границ зерен за счет их измельчения увеличивает поверхности, на которых выделяются карбиды. Выделяю­щиеся карбиды более дисперсны, и местное обеднение объема зерна хро­мом происходит на меньшую глубину. Кроме того, процессы диффузии в феррите протекают значительно быстрее, и выравнивание концентрации хрома в обедненных участках и центральных участках зерна происходит достаточно быстро.

Межкристаллитная коррозия основного металла на некотором уда­лении от шва (см. рис. 9.4, а) вызывается также действием термического цикла сварки в той части основного металла, где находилась изотерма критических температур.

Предупреждение склонности стали и швов к ММК достигается: снижением содержания углерода до пределов его растворимости в аусте-ните (до 0,02 ... 0,03 %), легированием более энергичными, чем хром, карбидообразующими элементами (стабилизация титаном, ниобием, тан-

ОСОБЕННОСТИ ТЕХНОЛОГИИ И ТЕХНИКИ СВАРКИ 359

талом, ванадием и др.); аустенитизацией (закалкой) с температур 1050 ... 1100 °С, однако при повторном нагреве в интервале критических темпе­ратур (500 ... 800 °С) сталь повторно приобретает склонность к межкри­сталлитной коррозии; стабилизирующим отжигом при температуре 850 ... 900 °С в течение 2 ... 3 ч; созданием аустенитно-ферритной струк­туры с содержанием феррита до 20 ... 25 % путем дополнительного леги­рования хромом, кремнием, молибденом, алюминием и др. Однако такое высокое содержание в структуре феррита может понизить стойкость ме­талла к общей коррозии. Эти же меры способствуют и предупреждению ножевой коррозии.

Ножевая коррозия имеет сосредоточенный характер (см. рис. 9.4, в) и поражает основной металл. Этот вид коррозии развивается в сталях, стабилизированных титаном и ниобием, обычно в участках, которые на­гревались до температур выше 1250 °С. При этом карбиды титана и нио­бия растворяются в аустените. Повторное тепловое воздействие на этот металл критических температур 500 ... 800 °С (например, при много­слойной сварке) приведет к сохранению титана и ниобия в твердом рас­творе и выделению карбидов хрома.

Общая коррозия представляет собой растворение металла в корро­зионной среде и может развиваться преимущественно в металле шва, различных участках зоны термического влияния или преимущественно в основном металле. В некоторых случаях она может развиться равномер­но в основном металле и сварном соединении.

Наблюдается еще один вид коррозионного разрушения - коррози­онное растрескивание, возникающее под совместным действием растяги­вающих напряжений и агрессивной среды. Разрушение развивается как межкристаллитное, так и транскристаллитное. Снижение уровня оста­точных сварочных напряжений - одна из основных мер борьбы с этим видом коррозионного разрушения.

9.3. ОСОБЕННОСТИ ТЕХНОЛОГИИ И ТЕХНИКИ СВАРКИ

Высоколегированные аустенитные стали и сплавы обладают ком­плексом положительных свойств. Поэтому одну и ту же марку стали ино­гда можно использовать для изготовления изделий различного назначе­ния, например коррозионно-стойких, хладостойких, жаропрочных и т.д. В связи с этим и требования к свойствам сварных соединений будут раз-

ТЕХНОЛОГИЯ СВАРКИ АУСТЕНИТНЫХ СТАЛЕЙ

личными. Это определит и различную технологию сварки (сварочные мате­риалы, режимы сварки, необходимость последующей термообработки и т.д.), направленную на получение сварного соединения с необходимыми свойствами, определяемыми составом металла шва и его структурой.

Характерные для высоколегированных сталей теплофизические свойства определяют некоторые особенности их сварки. Пониженный коэффициент теплопроводности при равных остальных условиях значи­тельно изменяет распределение температур в шве и околошовной зоне (рис. 9.5). В результате одинаковые изотермы в высоколегированных сталях более развиты, чем в углеродистых. Это увеличивает глубину проплавления основного металла, а с учетом повышенного коэффициента теплового расширения возрастает и коробление изделий.

Поэтому для уменьшения коробления изделий из высоколегирован­ных сталей следует применять способы и режимы сварки, характери­зующиеся максимальной концентрацией тепловой энергии. Примерно в 5 раз более высокое, чем у углеродистых сталей, удельное электросопро­тивление обусловливает больший разогрев сварочной проволоки в выле­те электрода или металлического стержня электрода для ручной дуговой сварки. При автоматической и полуавтоматической дуговой сварке следует уменьшать вылет электрода и повышать скорость его подачи. При ручной дуговой сварке уменьшают длину электродов и допустимую плотность сварочного тока.

Одна из основных трудностей при сварке рассматриваемых сталей и сплавов - предупреждение образования в швах и околошовной зоне го­рячих трещин. Предупреждение образования этих дефектов достигается:

Рис. 9.5. Температурные поля при одинаковой погонной энергии

и толщине металла при сварке углеродистой (а)

и высоколегированной (б) сталей

ОСОБЕННОСТИ ТЕХНОЛОГИИ И ТЕХНИКИ СВАРКИ 361

1) ограничением (особенно при сварке аустенитных сталей) в основ­ном и наплавленном металлах содержания вредных (серы, фосфора) и ликвирующих (свинца, олова, висмута) примесей, а также газов - кисло­рода и водорода. Для этого следует применять режимы, уменьшающие долю основного металла в шве, и использовать стали и сварочные мате­риалы с минимальным содержанием названных примесей. Техника свар­ки должна обеспечивать минимальное насыщение металла шва газами. Этому способствует применение для сварки постоянного тока обратной полярности. При ручной сварке покрытыми электродами следует под­держивать короткую дугу и сварку вести без поперечных колебаний. При сварке в защитных газах, предупреждая подсос воздуха, следует поддер­живать коротким вылет электрода и выбирать оптимальными скорость сварки и расход защитных газов. Необходимо также принимать меры к удалению влаги из флюса и покрытия электродов, обеспечивая их необ­ходимую прокалку. Это уменьшит также вероятность образования пор, вызываемых водородом;

2) получением такого химического состава металла шва, который обеспечил бы в нем двухфазную структуру. Для жаропрочных и жаро­стойких сталей с малым запасом аустенитности и содержанием никеля до 15 % это достигается получением аустенитно-ферритной структуры с 3 ... 5 % феррита. Большее количество феррита может привести к значи­тельному высокотемпературному охрупчиванию швов ввиду их сигмати-зации. Стремление получить аустенитно-ферритную структуру швов на глубокоаустенитных сталях, содержащих более 15 % Ni, потребует по­вышенного их легирования ферритообразующими элементами, что при­ведет к снижению пластических свойств шва и охрупчиванию ввиду по­явления хрупких эвтектик, а иногда и σ-фазы.

Поэтому в швах стремятся получить аустенитную структуру с мел­кодисперсными карбидами и интерметаллидами. Благоприятно и легиро­вание швов повышенным количеством молибдена, марганца и вольфра­ма, подавляющих процесс образования горячих трещин. Количество фер­рита в структуре швов на коррозионно-стойких сталях может быть по­вышено до 15 ... 25 %. Высоколегированные стали содержат в качестве легирующих присадок алюминий, кремний, титан, ниобий, хром и другие элементы, обладающие большим сродством к кислороду, чем железо. Поэтому при наличии в зоне сварки окислительной атмосферы возможен их значительный угар, что может привести к уменьшению содержания

ТЕХНОЛОГИЯ СВАРКИ АУСТЕНИТНЫХ СТАЛЕЙ

или к полному исчезновению в структуре шва ферритной и карбидной фаз, особенно в металле с небольшим избытком ферритизаторов.

Для сварки рекомендуется использовать неокислительные низко­кремнистые, высокоосновные флюсы (фторидные) и покрытия электро­дов (фтористокальциевые). Сварка короткой дугой и предупреждение подсоса воздуха служит этой же цели. Азот - сильный аустенитизатор, способствует измельчению структуры за счет увеличения центров кри­сталлизации в виде тугоплавких нитридов. Поэтому азотизация металла шва способствует повышению их стойкости против горячих трещин.

Высокоосновные флюсы и шлаки, рафинируя металл шва и иногда модифицируя его структуру, повышают стойкость против горячих тре­щин. Механизированные способы сварки, обеспечивая равномерное про-плавление основного металла по длине шва и постоянство термического цикла сварки, позволяют получить и более стабильные структуры на всей длине сварного соединения;

3) применением технологических приемов, направленных на изме­нение формы сварочной ванны и направления роста кристаллов аустени-та. Действие растягивающих сил, перпендикулярное направлению роста столбчатых кристаллов, увеличивает вероятность образования горячих трещин (рис. 9.6). При механизированных способах сварки тонкими элек­тродными проволоками поперечные колебания электрода, изменяя схему кристаллизации металла шва, позволяют уменьшить его склонность к горя­чим трещинам;



Дата добавления: 2016-11-29; просмотров: 5922;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.029 сек.