Изучение режимов течения жидкости (опыт Рейнольдса)


 

При изучении движения вязкой жидкости различают два режима – ламинарный и турбулентный.

Ламинарным режимом называется слоистое движение жидкости. Силы внутреннего трения или вязкости, возникающие между слоями при ламинарном движении, не дают проявиться пульсации скорости отдельных частиц и их переходу в соседние слои.

Турбулентным называется режим, при котором слоистость движения жидкости нарушена, появляется пульсация скорости, вызывающая перемешивание жидких частиц в потоке.

Характеристикой режимов движения служит безразмерное число Рейнольдса

 

(4.1)

 

где V - средняя скорость; d - характерный линейный размер; n -коэффициент кинематической вязкости.

Число Рейнольдса , при котором происходит переход ламинарного режима в турбулентный, называется критическим - кр.

Ламинарный режим потока будет устойчивым при числах Рейнольлса меньших критического: для круглых труб при Reкрd = 2320; для потоков некруглой формы или открытых ReкрRг = 580.

Экспериментально установлено, что существует два критических числа Рейнольдса: нижнее критические число Рейнольдса - ReкрН и верхнее критическое число Рейнольлса - ReкрВ.

Если число Рейнольдса, подсчитанное по формуле (4.1), окажется меньше значения нижнего критического числа, т.е. Re < ReкрН,то режим будет всегда ламинарным, если же Re > ReкрВ, то режим движения будет всегда турбулентным.

При числах , удовлетворяющих неравенству

ReкрН < Re < ReкрВ,

режим может быть либо ламинарным, либо турбулентным, в зависимости от предыстории движения жидкости. Однако при указанных числахламинарный режим движения неустойчивый, малейшие возмущения, вносимые в ламинарный поток жидкости (например, сотрясение трубы), не затухают и приводят к смене режима на турбулентный.

Потери напора hl по длине трубы при ламинарном движении пропорциональны скорости в первой степени hl = k1×V1, где k1 - коэффициент пропорциональности, зависящий отразмеров трубы и свойств жидкости.

При развитом турбулентном режиме потери hl пропорциональны квадрату скорости: hl = k1×V2. В переходной области сопротивления (от доквадратичной к квадратичной), когда касательные напряжения в потоке от сил вязкости соизмеримы с напряжениямиот пульсаций скорости, вызывающей перемешивание, потери напора hl пропорциональны скорости в степени выше первой, но ниже второй.

 



Дата добавления: 2016-11-26; просмотров: 1753;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.