Точечный источник на поверхности полубесконечного тела


Точечный источник теплоты постоянной мощности q движется с постоянной скоростью v прямолинейно из точки Оо в направлении оси х.

 

 


Допустим, что с момента движения источника прошло время tн и он находится в точке О. Вместе с источником перемещается подвижная система координат, начало которой совпадает с источником теплоты , т.е. с точкой О. Требуется определить приращение точки A(x,y,z).

Для этого запишем приращение температуры в точке А от мгновенного точечного источника, который действовал в течение времени dt в точке О1 . С момента выделения теплоты в точке О прошло время t. Используем уравнение для мгновенного источника и, полагая Q=qdt, а расстояние , получим

 

Суммируем приращения температуры от всех элементарных источников теплоты на линни Оо. Интергирование ведем в пределах от 0 до tн .

Точное аналитическое решение этого уравнения весьма затруднительно и на практике решение находится с помощью номограмм.

После продолжительного действия источника теплоты температура в подвижной системе координат перестает изменяться во времени. Такое предельное состояние распространения тепла достигается при tн®¥. В этом случае получается точное аналитическое решение для приращения температуры

Температурное поле предельного состояния симметрично относительно оси Ох. Изотермы на поверхности xOy представляют собой овальные кривые , сгущенные впереди источника. При vR/2a ®0 изотермы близки к окружностям. Изотермические поверхности внутри тела образуются вращением изотерм вокруг оси Ох.

Y Y

       
   


X Z

 

 

Рассмотрим распределение температур в плоскости xOz и параллельных ей плоскостях.

 

       
   


у=0

у=1

у=2

х

 

Температура точек при приближении источника резко возрастает, достигает максимума и далее убывает с меньшей скоростью. Чем дальше удалена точка от оси Ох , тем позже достигается максимум температуры после прохождения источника через проекцию точки на оси Ох и тем он меньше.



Дата добавления: 2016-10-26; просмотров: 1901;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.