Моделювання СМ в ортогональній системі координат


Істотного спрощення математичної моделі можна досягти відповідним перетворенням змінних і застосуванням систем відносних одиниць. Основний вид перетворення вживаний в СМ є представлення систем диференціальних рівнянь в прямокутній, жорстко пов'язаній з ротором, координатній системі осей dq. Перетворенням піддаються струми, напруги і потокосцепленія статора, наприклад для фазних струмів:

;

;

.

Змінні роторних обмоток зазвичай залишаються тим самим і не перетворяться, оскільки вони вже зорієнтовані по осях dq.

Якщо замінити по формулах перетворення струми, потокосцепленія і напруга статора в рівняннях СМ, то після щодо складних перетворень отримаємо нову систему рівнянь у фізичних величинах.

;

;

;

;

;

;

;

;

;

;

;

;

Тут позначено:

;

.

Величини напруги можуть бути визначені за допомогою формул перетворення по відомих залежностях реальних фазової напруги. Так якщо останні виражаються гармонійними функціями

;

;

.

де початкова фаза включення мережевої напруги, то в перетвореному вигляді

;

.

На практиці зазвичай використовуються рівняння синхронної машини, записані у відносних одиницях. В даний час базові величини обмоток статорів загальноприйняті, а роторних обмоток у різних авторів різні. При приведенні до відносних одиниць роторних величин найбільш поширеної є, так звана, "система одиниць " або системою рівний взаїмоїндуктівностей.

Система рівнянь СМ у відносних одиницях матиме вигляд:

;

;

;

;

;

;

;

;

;

;

Тут ;

Ці рівняння можуть бути покладені в основу математичної моделі, проте реалізувати їх у такому вигляді скрутно, оскільки ускладнюється визначення струмів в контурах. Для їх визначення необхідно заздалегідь вирішувати систему рівнянь потокосцепленій щодо струмів в контурах.

Зв'язок між струмами і потокосцепленіямі виражається наступною системою рівнянь:

;

;

;

;

Коефіцієнти є функціями параметрів СМ

де - індуктивні опори по подовжній і поперечній осі, опір розсіяння; - індуктивні опори обмотки збудження і демпферної обмотки по подовжній осі.

Знаходження значень цих опорів менш трудомістко, чим власних і взаємних індуктівностей. Опори зв'язані між собою і з різними постійними часу, які приводяться в каталожних даних.

; ; ;

; ; ;

 

; ; ;

; ; ; ;

;

.

Ці рівняння разом з диференціальними рівняннями контурів статора і рівняння динаміки є математичною моделлю СМ.

Основний недолік системи - неможливість моделювання СМ з преобразовательными агрегатами. Це можливо тільки у фазних координатах.

Переваги - спрощення рівнянь і зменшення їх кількості.

Зв'язати струми і напругу в двох координатних системах можна наступними виразами:

- модуль вектора напруги, що зображає

;

- модуль вектора струму, що зображає

- активна потужність

- реактивна потужність

;

ДЛЯ прикладу, побудуємо процеси асинхронного пуску синхронного двигуна СДЕ-15-34-6У2, з наступними паспортними даними::

Параметр значення Параметр значення Параметр значення
0,0874 0,005
0,847 0,051
0,463 0,021
71,5 0,889 0,002
104,7 0,436    
0,828    

 

У асинхронному режимі , а обмотка збудження замикається на п'ятикратний розрядний опір .

На малюнках представлені результати моделювання

Отримані перехідні процеси а) - кутовій швидкості w(t); б) - електромагнітного моменту M(t); в)і г) - модуля вектора струмів статора, що зображає ; і ротора .

 

 

Розділ 8.



Дата добавления: 2021-01-11; просмотров: 338;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.