Оценки важности правил
Правило | d1 | d2 | d3 | d4 | d5 | d6 |
Мягкая экспертная оценка | ||||||
Коэффициент | 0,6 | 0,6 | 0,6 | 0,6 | 0,6 | |
Жесткая экспертная оценка | ||||||
Коэффициент | 0,6 | 0,9 | 0,9 | 0,6 |
Нечеткие отношения D1, ..., D6, возводятся в степени, соответствующие весовым коэффициентам правил, после чего выполняется их пересечение и получается общее решение D.
При мягком подходе к принятию решения получены следующие точечные оценки альтернатив: F(u1) - 0,494; F(u2) - 0,533; Р(u3) - 0,530; Р(u4) - 0,437; Р(u5) - 0,539. Полученные результаты можно интерпретировать следующим образом: наиболее предпочтительными кандидатами являются u5, и2 и u3, за ними следует и1, а худшей альтернативой является u4. Таким образом, при мягком подходе лучшие альтернативы становятся слабо различимыми, что выглядит естественно, поскольку все они являются неплохими кандидатами.
При жестком подходе множество точечных оценок альтернатив имеет вид: F(u1) - 0,555; F(u2) - 0,828; Р(u3) - 0,549; Р(u4)- 0,512; Р(u5) - 0,558. Абсолютное предпочтение имеет кандидатура и2, на втором месте с очень близкими оценками находятся кандидаты u5 и и1, на третьем – u3 и на последнем – u4. Нетрудно заметить, что при жесткой оценке ослабляются различия между претендентами, далекими от идеала.
Подход с использованием правил, имеющих одинаковую важность, можно считать усредненным, или рациональным.
Рассмотренный метод принятия решений с использованием правил нечеткого вывода является адаптацией нечеткой логики к процессам принятия решений с исходными данными в виде точечных оценок. В ряде случаев оценивание альтернатив удобнее производить с использованием нечетких чисел, которые являются значениями лингвистических переменных. При этом правила могут применяться не одновременно, а последовательно. Такой подход к компьютерной поддержке процессов принятия решений используется в интеллектуальных системах с нечеткой логикой.
Рассмотрим решение задачи о выборе бухгалтера с использованием такой системы. Для этого введем следующие лингвистические переменные:
ОБРАЗОВАНИЕ (Высшее, Среднее)
ОПЫТ (Отсутствует, Приемлемый, Большой)
УМЕНИЕ РАБОТАТЬ С ПО (Есть, Нет)
ЮРИДИЧЕСКАЯ ГРАМОТНОСТЬ (Есть, Нет)
СПЕЦИАЛИСТ (Удовлетворяющий, Неудовлетворяющий)
КАНДИДАТ (Хороший, Очень хороший. Безупречный).
В скобках приведены возможные значения лингвистических переменных, каждое из которых представлено нечетким числом (множеством). Отношения между лингвистическими переменными задаются с помощью правил:
d1: "Если ОБРАЗОВАНИЕ = Высшее или ОБРАЗОВАНИЕ = Среднее и ОПЫТ = Приемлемый или ОПЫТ == Большой, то СПЕЦИАЛИСТ = Удовлетворяющий, иначе СПЕЦИАЛИСТ = Неудовлетворяющий";
d2 : "Если СПЕЦИАЛИСТ = Удовлетворяющий и УМЕНИЕ РАБОТАТЬ С ПО = Есть, то КАНДИДАТ = Хороший";
d3: "Если СПЕЦИАЛИСТ = Удовлетворяющий и ЮРИДИЧЕСКАЯ ГРАМОТНОСТЬ = Есть, то КАНДИДАТ = Очень хороший";
d4: "Если СПЕЦИАЛИСТ = Удовлетворяющий и УМЕНИЕ РАБОТАТЬ С ПО = Есть, и ЮРИДИЧЕСКАЯ ГРАМОТНОСТЬ = Есть, то КАНДИДАТ = Безупречный".
Правила записываются в базу знаний интеллектуальной системы. В процессе решения задачи пользователем задаются исходные данные, которые представляют собой значения лингвистических переменных, соответствующих альтернативам. Обработка этих данных осуществляется посредством процедур нечеткого логического вывода. Результатами работы системы являются нечеткое множество, полученное для заданного кандидата, и мера его сходства с возможными исходами, т. е. нечеткими множествами:
СПЕЦИАЛИСТ (Удовлетворяющий);
СПЕЦИАЛИСТ (Неудовлетворяющий);
КАНДИДАТ (Хороший);
КАНДИДАТ (Очень хороший);
КАНДИДАТ (Безупречный).
Значения лингвистических переменных для альтернатив u1, ..., u5 приведены в табл. 4.6.
Таблица 4.6
Дата добавления: 2021-01-11; просмотров: 346;