Лазер как автогенератор


Примером автоколебательной системы с распределенными параметрами является оптический квантовый генератор - лазер. Распределенное отрицатель­ное сопротивление в лазере создается активной средой с инверсной населенно­стью и существует в определенной полосе частот вблизи линии поглощения среды. Как правило, в пределах ширины линии люминесценции укладывается несколько собственных частот резонатора, поэтому лазер, в общем случае, генерирует ряд мод с частотами, близкими к собственным частотам резонатора.

Анализ работы лазера обычно проводится методом самосогласованного поля в полуклассическом приближении. Предполагается, что электромагнитное поле, воздействуя на активную среду, создает в ней поляризацию, которая, в свою очередь, является источником электромагнитного поля. При этом элек­тромагнитное поле описывают классическими уравнениями Максвелла, а поля­ризацию среды, определяющую отрицательное нелинейное сопротивление, рас­сматривают на квантовом уровне. При таком подходе поляризация среды зависит не от мгновенного значения напряженности поля, а от его амплитуды, то есть лазер является автогенератором с инерциальной нелинейностью, анало­гичным рассмотренному в пункте 6.2.

В простейшем случае оптического резонатора Фабри-Перро, образованного двумя плоскими зеркалами, расположенными на расстоянии l друг от дру­га, наибольшую добротность имеют аксиально симметричные моды колебаний. Электромагнитное поле таких колебаний медленно меняется в пространстве в направлении, параллельном зеркалам, а его поляризация сохраняется. Это по­зволяет ограничиться рассмотрением одномерного скалярного уравнения Мак­свелла, которое для проводящей немагнитной среды принимает вид

. (9.24)

Будем считать, что величина s характеризует все виды потерь энергии в оптическом резонаторе.

Напряжённость электрического поля можно представить в виде ряда по собственным функциям нормальных мод резонатора

, (9.25)

где kn = pn/l = 2p/ln - волновое число n-го нормального колебания. Такой вид нормальных колебаний соответствует граничным условиям E(0, t) = E(l, t) = 0, когда в точках z = 0 и z = l находятся зеркала с единичным коэффициентом от­ражения. Умножим уравнение (9.24) на sin(kmz) и проинтегрируем по z от 0 до l. Учитывая ортогональность собственных функций разложения (9.25) и гранич­ные условия, получим

, (9.26)

где Qn - добротность резонатора на n-й моде, wn - частота n-й моды, Wn = pnc/l - собственная частота резонатора, Pn - пространственная фурье-компонента поляризации среды, равная

.

При достаточно высокой добротности резонатора и небольшой величины поляризации, когда лазер работает вблизи порога самовозбуждения, для реше­ния уравнения (9.26) можно использовать метод ММА. Будем искать решение (9.26) в виде

,  ,

где En(t), jn(t) - медленно меняющиеся за период 2p/wn амплитуда и фаза n-го колебания, Cn(t) и Sn(t) - медленно меняющиеся компоненты поляризации. В си­лу инерциальной нелинейности активной среды можно считать, что компонен­ты поляризации являются нечётными функциями амплитуд колебаний вида

,  . (9.27)

Уравнения (9.27) являются материальными уравнениями нелинейной ак­тивной среды, в них опущены колебания комбинационных частот, не попадаю­щие в полосы пропускания оптического резонатора. Коэффициенты уравнений (9.27) для двухуровневого газового лазера рассчитаны У. Лэмбом. С учетом этих соотношений укороченные уравнения для системы (9.26) принимают вид

, (9.28)
. (9.29)

Из уравнения (9.28), в частности, следует, что величина a0n определяет усиление активной среды на n-й моде колебаний для слабого сигнала. Поэтому условие самовозбуждения n-й моды можно записать в виде a0n > wn/(2Qn). При выполнении этого условия поступление энергии в систему превышает потери в резонаторе на соответствующей частоте.

Рассмотрим сначала случай возбуждения в системе только одной моды, единственной, для которой выполняется условие самовозбуждения. Уравнения (9.28) и (9.29) в этом случае принимают вид:

,  .

Отсюда можно найти стационарную амплитуду и частоту генерации

,  ,

где обозначено a = a0 - w/(2Q). Отметим, что амплитуда установившихся коле­баний E0 тем больше, чем больше поступление энергии в систему превышает по­тери в ней. Кроме того, E0 зависит от коэффициента нелинейности b, как это имеет место и в одноконтурном автогенераторе (см. пункт 6.2). Этот коэффициент определяет уменьшение инверсной населённости, связанное с насыщением активной среды, вызванным колебаниями генерируемой моды. При малой амплитуде частота генерации w отличается от собственной частоты резонатора на величину . Коэффициент s пропорционален разности между собственной частотой резонатора и частотой спектральной линии атомного перехода. Поэтому он создаёт линейное подтягивание генерируемой частоты к частоте атомного перехода. Нелинейное сла­гаемое даёт зависящее от амплитуды смещение частоты генерации.

Если усиление активной среды превышает потери для двух собственных частот оптического резонатора, то возможна одновременная генерация двух не­зависимых мод колебаний. В случае двухмодового режима укороченные уравнения (9.28) для амплитуд E1 и E2 принимают вид:

,  . (9.30)

Здесь a1 = a01 - w1/(2Q1), a2 = a02 - w2/(2Q2) - коэффициенты, характеризующие превышение усиления над потерями для каждой из мод. Коэффициенты q12 и q21 определяют уменьшение инверсной населенности для каждой моды, вызванное колебаниями другой моды, т. е. эквивалентны коэффициентам связи.

Урав­нения (9.30) удобно переписать для квадратов амплитуд , :

,  . (9.31)

Система уравнений (9.31) имеет четыре стационарных решения:

;  , ;  , ; , . (9.32)

Первое решение соответствует отсутствию генерации, второе и третье - генера­ции одной моды. Четвертое решение описывает режим одновременной генера­ции двух мод.

Устойчивость стационарных решений можно определить стан­дартным методом, анализируя малые отклонения от стационарного состояния.

Коэффициенты b1 и b2 для активной среды всегда положительны. Если оба коэффициента a1 и a2 положительны, т. е. условия самовозбуждения выпол­нены для обеих мод, то режим покоя неустойчив. При a1/q12 > a2/b1 и a2/q21 < a1/b2 система генерирует одну моду с X = a1/b1, Y = 0. Вторая мода по­давляется модой с большим коэффициентом усиления. Если же a1/q12 > a2/b1 и a2/q21 > a1/b2, то в системе могут существовать обе моды колебаний. При сла­бой связи b1b2 > q12q21 происходит одновременная генерация обеих мод.

Ам­плитуды и частоты этих колебаний в стационарном режиме в силу соотношений (9.29) и (9.32) имеют вид

,  . (9.33)
,  . (9.34)

Из формулы (9.34), в частности, следует, что частота каждого из колебаний за­висит не только от его амплитуды, но и от амплитуды второго колебания.


Список рекомендуемой литературы[1]

1. Основы теории колебаний: Учеб. руководство/Под ред. В. В. Мигулина.- М.: Наука, 1988.- 392с.

2. Капранов М. В., Кулешов В. Н., Уткин Г. М. Теория колебаний в радиотехнике: Учебное пособие для вузов.- М.: Наука, 1984.- 320с.


[1] Конечно же, основным источником литературы для составления этого учебного пособия послужили лекции В. К. Игнатьева.



Дата добавления: 2019-02-08; просмотров: 534;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.014 сек.