Режимы при больших возмущениях и больших изменениях скорости (расчеты асинхронного хода, ресинхронизации, результирующей устойчивости).
Для асинхронного режима характерно периодическое изменение вектора эдс хотя бы одной станции системы на угол, больший 360°, вследствие того что роторы генераторов вращаются со скоростью , отличной от синхронной . При этом синхронная машина одновременно с синхронным развивает и асинхронный момент, а ее параметры, зависящие от скольжения, приобретают новые значения ( и ). В этих условиях ток, циркулирующий в элементах системы, имеет слагающие двух частот: Асинхронные двигатели нагрузки, реагируя на изменение частоты и напряжения, будут изменять свои мощности и скорость. При значительных отклонениях частоты в системе индуктивные и емкостные сопротивления трансформаторов, линий и других неподвижных элементов будут также претерпевать изменения. Следовательно, расчет асинхронных режимов систем, строго говоря, должен выполняться в условиях, когда ряд элементов учитывается специфическими для них параметрами и характеристиками.
Так, отдаваемая синхронными машинами мощность в генераторном режиме и получаемая в двигательном режиме зависят не только от угла, но и от скорости его изменения. В этом случае упрощенно можно предположить, что мощность Р и электромагнитный момент М будут иметь составляющие — синхронную и асинхронную, т. е.
; ,
при этом
; .
Синхронная мощность определяется .
Асинхронная мощность определяется:
,
где - угол начала отсчета.
Среднее значение асинхронной мощности
.
Полная реактивная мощность (синхронная, асинхронная и намагничивания):
.
Приведенные выражения справедливы при связи генератора с шинами неизменного напряжения через сопротивление , которое введено в сопротивления и др. Их можно применять для приближенных расчетов, когда система представлена эквивалентным генератором с эдс и сопротивлениями .
При определении допустимости в энергосистеме режима, связанного с асинхронным ходом, проверяют:
1) для машин, работающих асинхронно,— механические усилия, которые они будут испытывать, допустимую длительность по нагреву ротора и статора при максимально возможном скольжении;
2) характер асинхронного хода после нарушения синхронизма (устойчивый, неустойчивый, перемежающийся синхронно-асинхронный) и условия синхронизации;
3) допустимость асинхронного хода по условиям режима части системы, сохранившей
нормальную синхронную работу. Для этого в ней определяют: распределение мощностей,
напряжение в контрольных узловых точках; возможность появления лавины напряжения
при его глубоких посадках; изменение частоты; возможность неправильного действия релейной
защиты и системной автоматики.
Основная цель всех расчетов — оценка возможного скольжения машины, работающей асинхронно, и общей длительности асинхронного хода и больших качаний.
Особенности и порядок расчета результирующей устойчивости. Математическое описание процессов может быть основано на использовании либо дифференциальных уравнений, связывающих мгновенные значения переменных (уравнения Парка — Горева), либо дифференциальных и алгебраических уравнений, рассматривающих огибающие мгновенных значений переменных. В каждом из этих случаев параметры расчетной схемы могут приниматься постоянными или переменными, зависящими от частоты.
Первый этап решения системы уравнений, описывающей процесс с той или иной степенью идеализации, заключается в определении потокораспределения (токораспределения) и скольжения генераторов, работающих асинхронно, проводимый в предположении заданного напряжения (по действующему значению и частоте) в одной из точек системы. На втором этапе выявляют возможность ресинхронизации части энергосистемы, работающей асинхронно. Оба этапа расчета ведутся методом последовательных приближений.
Дата добавления: 2020-10-14; просмотров: 387;