Представление вещественных чисел в памяти.


В некоторых областях вычислений требуются очень большие или весьма малые действительные числа. Для получения большей точности применяют запись чисел с плавающей точкой. Запись числа в формате с плавающей точкой является весьма эффективным средством представления очень больших и весьма малых вещественных чисел при условии, что они содержат ограниченное число значащих цифр, и, следовательно, не все вещественные числа могут быть представлены в памяти. Обычно число используемых при вычислениях значащих цифр таково, что для большинства задач ошибки округления пренебрежимо малы.

Формат для представления чисел с плавающей точкой содержит одно или два поля фиксированной длины для знаков. Количество позиций для значащих цифр различно в разных ЭВМ, но существует, тем не менее, общий формат, приведенный на рисунке 2.5 а). В соответствии с этой записью формат вещественного числа содержит в общем случае поля мантиссы, порядка и знаков мантиссы и порядка.

Рис. 2.5. Формат представления вещественных чисел

Однако, чаще вместо порядка используется характеристика, получающаяся прибавлением к порядку такого смещения, чтобы характеристика была всегда положительный. При этом имеет место формат представления вещественных чисел такой, как на рис 2.5 б).

Введение характеристики избавляет от необходимости выделять один бит для знака порядка и упрощает выполнение операций сравнения (,<=,>=) и арифметических операций над вещественными числами. Так, при сложении или вычитании чисел с плавающей точкой для того, чтобы выровнять операнды, требуется сдвиг влево или вправо мантиссы числа. Сдвиг можно осуществить с помощью единственного счетчика, в который сначала заносится положительное чис- ло, уменьшающееся затем до тех пор, пока не будет выполнено требуемое число сдвигов.

Таким образом, для представления вещественных чисел в памяти ЭВМ порядок p вещественного числа представляется в виде характеристики путем добавления смещения (старшего бита порядка):

Х = 2^(n-1) + k + p, (2.1)

где:

· n - число бит, отведенных для характеристики,

· p - порядок числа,

· k - поправочный коэффициент фирмы IBM, равный +1 для real

· и -1 для форматов single, double, extended.

Формулы для вычисления характеристики и количество бит, необходимых для ее хранения, приведены в таблице 2.2.

Тип Харрактеристика Кол-во бит на хар-ку
real x = 2^7 + p + 1
single x = 2^7 + p - 1
double x = 2^10 + p - 1
extended x = 2^14 + p - 1

Таблица 2.2

Следующим компонентом представляемого в машине числа с плавающей точкой является мантисса. Для увеличения количества значащих цифр в представлении числа и исключения переполнения при умножении мантиссу обычно подвергают нормализации. Нормализация означает, что мантисса (назовем ее F), кроме случая, когда F=0, должна находиться в интервале

R^(-1) <= F < 1.

Для двоичной системы счисления R=2. Тогда в связи с тем, что 2^(-1) <= F < 1, ненулевая мантисса любого хранимого числа с плавающей точкой должна начинаться с двоичной единицы. В этом и заключается одно из достоинств двоичной формы представления числа с плавающей точкой. Поскольку процесс нормализации создает дробь, первый бит которой равен 1, в структуре некоторых машин эта еди- ница учитывается, однако не записывается в мантиссу. Эту единицу часто называют скрытой единицей, а получающийся дополнительный бит используют для увеличения точности представления чисел или их диапазона.

Приведенный метод нормализации является классическим методом, при котором результат нормализации представляется в виде правильной дроби, т.е. с единицей после точки и нулем в целой части числа. Но нормализацию мантиссы можно выполнить по разному.

В IBM PC нормализованная мантисса содержит свой старший бит слева от точки. Иными словами нормализованная мантисса в IBM PC принадлежит интервалу 1 <= F < 2. В памяти машины для данных типа real, single, double этот бит не хранится, т.е. является "скрытым" и используется для увеличения порядка в форматах single или для хранения знака в формате real. Для положительных и отрицательных чисел нормализованная мантисса в памяти представлена в прямом коде.

Первый, старший, бит в представлении чисел в формате с плавающей точкой является знаковым, и по принятому соглашению нуль обозначает положительное число, а единица - отрицательное.

Число бит для хранения мантиссы и порядка зависит от типа вещественного числа. Суммарное количество байтов, диапазоны допустимых значений чисел вещественных типов, а также количество значащих цифр после запятой в представлении чисел приведены в таблице 2.3.

Тип Диапазон значений Значащие цифры Размер в байтах
real 2.9*10^(-39)..1.7*10^38 11-12
single 1.4*10^(-45)..3.4*10^38 7-8
double 4.9*10^(-324)..1.8*10^308 15-16
extended 3.1*10^(-4944)..1.2*10^4932 19-20

Таблица 2.3



Дата добавления: 2016-07-22; просмотров: 2466;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.