Требование к установке манометра

1. Шкала должна быть чётко видна.

2. Подход к манометру должен быть свободным.

3. В зависимости от высоты установки манометра выбирается диаметр прибора:

· до 2х метров - диаметр 100мм;

· от 2х до Зх метров - диаметр 160мм;

· свыше Зх метров - установка манометра запрещена.

4. Каждый манометр должен иметь отключающее устройство (Зх ходовой кран, вентиль или кран)

 

Правила обслуживания манометра.

Согласно технической инструкции производить посадку на «О»

Ведомственный осмотр 1 раз в 6 месяцев.

Государственная поверка- 1 раз в 12 месяцев.

Снимать и устанавливать манометры только при помощи ключа.

В случае пульсации давления необходимо принимать меры:

· при малой пульсации вваривается компенсатор;

· при большой пульсации используется специальное устройство - расширитель с двумя дросселями.

 

4. Оказание первой помощи при потере сознания (обмороке), тепловом и солнечном ударе.

 

Билет № 2

1. Параметры, характеризующие продуктивный пласт.

 

Нефть и газ аккумулируются в трещинах, порах и пустотах горных пород. Поры пластов малы, но их много, и они занимают объем, иногда достигающий 50 % общего объема пород. Нефть и газ обычно заключены в песчаниках, песках, известняках, конгломератах, являющихся хорошими коллекторами и характеризующихся проницаемостью, т.е. способностью пропускать через себя флюиды. Глины также обладают высокой пористостью, но они недостаточно проницаемы вследствие того, что соединяющие их поры и каналы очень малы, а флюид, находящийся в них, удерживается в неподвижном состоянии капиллярными силами.

Пористостью называют долю пустотного пространства в общем объёме породы.

Пористость зависит в основном от размера и формы зерен, степени их уплотнения и неоднородности. В идеальном случае (отсортированные однородные по размерам сферические зерна) пористость не зависит от размеров зерен, а определяется их взаимным расположением и может изменяться в пределах от 26 до 48 %. Пористость естественной песчаной породы, как правило, значительно меньше пористости фиктивного грунта, т.е. грунта, составленного из шарообразных частиц одинакового размера.

Песчаники и известняки имеют еще более низкую пористость из-за наличия цементирующего материала. Наибольшая пористость в естественном грунте присуща пескам и глинам, причем она возрастает (в отличие от фиктивного грунта) с уменьшением размера зерен породы, так как в этом случае их форма становится все более неправильной, а следовательно, и упаковка зерен – менее плотной. Ниже приведены значения пористости (в %) для некоторых пород.

Глинистые сланцы 0,5–1,4

Глины 6–50

Пески 6–50

Песчаники 3,5–29

Известняки и доломиты 0,5–33

С увеличением глубины вследствие повышения давления пористость горных пород обычно снижается. Пористость коллекторов, на которые бурят эксплуатационные скважины, изменяется в следующих пределах (в %):

Пески 20–25

Песчаники 10–30

Карбонатные породы 10–20

Карбонатные породы характеризуются обычно наличием различных по размеру трещин и оцениваются коэффициентом трещиноватости.

Одна из характеристик горных пород – гранулометрический состав, от которого во многом зависят другие физические свойства. Под этим термином понимается количественное содержание в породе разных по размеру зерен (в % для каждой фракции). Гранулометрический состав сцементированных пород определяется после их предварительного разрушения. Гранулометрический состав горных пород в известной мере характеризует их проницаемость, пористость, удельную поверхность, капиллярные свойства, а также количество остающейся в пласте нефти в виде пленок, покрывающих поверхность зерен. Им руководствуются в процессе эксплуатации скважин при подборе фильтров, предотвращающих поступление песка, и т.д. Размер зерен большинства нефтеносных пород колеблется от 0,01 до 0,1 мм. Однако обычно при изучении гранулометрического состава горных пород выделяют следующие категории размеров (в мм):

Галька, щебень > 10

Гравий 10–2

Песок:

грубый 2–1

крупный 1–0,5

средний 0,5–0,25

мелкий 0,25–0,1

Алевролит:

крупный 0,1–0,05

мелкий 0,05–0,1

Глинистые частицы < 0,01

Частицы размером примерно до 0,05 мм и их количество устанавливают методом рассева на наборе сит соответствующего размера с последующим взвешиванием остатков на ситах и определением отношения (в %) их массы к массе первоначальной пробы. Содержание же более мелких частиц определяется методами седиментации.

Неоднородность пород по механическому составу характеризуется коэффициентом неоднородности – отношением диаметра частиц фракции, которая составляет со всеми более мелкими фракциями 60 % по массе от всей массы песка, к диаметру частиц фракции, составляющей со всеми более мелкими фракциями 10 % по массе от всей массы песка (d60/d10). Для «абсолютно» однородного песка, все зерна которого одинаковы, коэффициент неоднородности Kн = d60/d10 = 1; Kн для пород нефтяных месторождений колеблется в диапазоне 1,1–20.

Способность горных пород пропускать через себя жидкости и газы называется проницаемостью. Все горные породы в той или иной степени проницаемы. При существующих перепадах давления одни породы непроницаемы, другие проницаемы. Все зависит от размеров сообщающихся пор и каналов в породе: чем меньше поры и каналы в горных породах, тем ниже их проницаемость. Обычно проницаемость в перпендикулярном к напластованию направлению меньше его проницаемости вдоль напластования.

Поровые каналы бывают сверх- и субкапиллярными. В сверхкапиллярных каналах, диаметр которых более 0,5 мм, жидкости движутся, подчиняясь законам гидравлики. В капиллярных каналах с диаметром от 0,5 до 0,0002 мм при движении жидкостей проявляются поверхностные силы (поверхностное натяжение, капиллярные силы прилипания, сцепления и т.д.), которые создают дополнительные силы сопротивления движению жидкости в пласте. В субкапиллярных каналах, имеющих диаметр менее 0,0002 мм, поверхностные силы настолько велики, что движения в них жидкости практически не происходит. Нефтяные и газовые горизонты в основном имеют капиллярные каналы, глинистые – субкапиллярные.

Между пористостью и проницаемостью горных пород прямой зависимости нет. Песчаные пласты могут иметь пористость 10–12 %, но быть высокопроницаемыми, а глинистые при пористости до 50 % – оставаться практически непроницаемыми.

Для одной и той же породы проницаемость будет изменяться в зависимости от количественного и качественного состава фаз, так как по ней могут двигаться вода, нефть, газ или их смеси. Поэтому для оценки проницаемости нефтесодержащих пород приняты следующие понятия: абсолютная (физическая), эффективная (фазовая) и относительная проницаемость.

Абсолютная (физическая) проницаемость определяется при движении в горной породе одной фазы (газа или однородной жидкости при отсутствии физико-химического взаимодействия между жидкостью и пористой средой при полном заполнении пор породы газом или жидкостью).

Эффективная (фазовая) проницаемость – это проницаемость пористой среды для данного газа или жидкости при содержании в порах другой жидкой или газообразной фазы. Фазовая проницаемость зависит от физических свойств породы и степени насыщенности ее жидкостью или газом.

Относительная проницаемость - отношение эффективной проницаемости к абсолютной.

Значительная часть коллекторов неоднородна по текстуре, минералогическому составу и физическим свойствам по вертикали и горизонтали. Иногда обнаруживаются существенные различия физических свойств на небольших расстояниях.

В естественных условиях, т.е. в условиях действия давлений и температур, проницаемость кернов иная, чем в атмосферных условиях, часто она необратима при создании в лаборатории пластовых условий.

Иногда емкость коллектора и промышленные запасы нефти и газа в пласте определяются объемом трещин. Эти залежи приурочены, главным образом, к карбонатным, а иногда – к терригенным породам.

Обычно строгой закономерности в распределении систем трещиноватости по элементам структур, к которым приурочены нефте- и газосодержащие залежи, не наблюдается.

Для оценки проницаемости обычно пользуются практической единицей дарси, которая приблизительно в 10-12 раз меньше, чем проницаемость в 1 м2.

За единицу проницаемости в 1 дарси (1 Д) принимают проницаемость такой пористой среды, при фильтрации через образец которой площадью 1 см2 и длиной 1 см при перепаде давления 1 кг/см2 расход жидкости вязкостью 1 сПз (сантипуаз) составляет 1 см3/с. Величина, равная 0,001 Д, называется миллидарси (мД).

Проницаемость пород нефтяных и газовых пластов изменяется от нескольких миллидарси до 2–3 Д и редко бывает выше.

Прямой зависимости между проницаемостью и пористостью горных пород не существует. Например, трещиноватые известняки, имеющие малую пористость, часто обладают большой проницаемостью и, наоборот, глины, иногда характеризующиеся высокой пористостью, практически непроницаемы для жидкостей и газов, так как их поровое пространство слагается каналами субкапиллярного размера. Однако на основании среднестатистических данных можно сказать, что более проницаемые породы часто и более пористые.

Проницаемость пористой среды зависит преимущественно от размера поровых каналов, из которых слагается поровое пространство.

 

2. Сепараторы, назначение, устройство, принцип действия и техническое обслуживание.

 

При добыче и транспортировке в природном газе содержатся различного рода примеси: песок, сварной шлам, конденсат тяжёлых углеводородов, вода, масло и т.д. Источником загрязнения природного газ является призабойная зона скважины, постепенно разрушающаяся и загрязняющая газ. Подготовка газа осуществляется на промыслах, от эффективности работы которых зависит и качество газа. Механические примеси попадают в газопровод, как в процессе его строительства, так и при эксплуатации.

Наличие механических примесей и конденсата в газе приводит к преждевременному износу трубопровода, запорной арматуры, рабочих колёс нагнетателей и, как следствие, снижению показателей надёжности и экономичности работы компрессорных станций и в целом газопровода.

Всё это приводит к необходимости устанавливать на КС различные системы очистки технологического газа. Первое время на КС для очистки газа широко использовали масляные пылеуловители (рис. 3), которые обеспечивали достаточно высокую степень очистки (до 97-98%).

 

Масляные пылеуловители работают по принципу мокрого улавливания разного рода смесей, находящихся в газе. Примеси, смоченные маслом сепарируются из потока газа, само масло очищается, регенерируется и вновь направляется в масленый пылеуловитель. Масляные пылеуловители чаще выполнялись в виде вертикальных сосудов, принцип действия которых, хорошо иллюстрируется рис. 3.

Очищаемый газ поступает в нижнюю секцию пылеуловителя, ударяется в отбойный козырёк 4 и соприкасаясь с поверхностью масла, меняет направление своего движения. При это наиболее крупные частицы остаются в масле. С большой скоростью газ проходит по контактным трубкам 3 в осадительную секцию II, где скорость газа резко снижается и частицы пыли по дренажным трубкам стекают в нижнюю часть пылеуловителя I. Затем газ поступает в отбойную секцию III, где в сепараторном устройстве 1 происходит окончательная очистка газа.

Недостатками масляных пылеуловителей являются: наличие постоянного безвозвратного расхода масла, необходимость очистки масла, а также подогрева масла при зимних условиях эксплуатации.

В настоящее время на КС в качестве первой ступени очистки широко применяют циклонные пылеуловители, работающие на принципе использования инерционных сил для улавливания взвешенных частиц (рис. 4).

 

Циклонные пылеуловители более просты в обслуживании нежели масляные. Однако эффективность очистки в них зависит от количества циклонов, а также от обеспечения эксплуатационным персоналом работы этих пылеуловителей в соответствии с режимом, на который они запроектированы.

Циклонный пылеуловитель (рис. 4) представляет собой сосуд цилиндрической формы, рассчитанный на рабочее давление в газопроводе, со встроенными в него циклонами 4.

Циклонные пылеуловитель состоит из двух секций: нижней отбойной 6 и верхней осадительной 1, где происходит окончательная очистка газа от примесей. В нижней секции находятся циклонные трубы 4.

Газ через входной патрубок 2 поступает в аппарат к распределителю и приваренным к нему звёздообразно расположенным циклонам 4, которые неподвижно закреплены в нижней решётке 5. В цилиндрической части циклонных труб газ, подводимый по касательной к поверхности, совершает вращательное движение вокруг внутренней оси труб циклона. Под действием центробежной силы твёрдые частицы и капли жидкости отбрасываются от центра к периферии и по стенке стекают в коническую часть циклонов и далее в нижнюю секцию 6 пылеуловителя. Газ после циклонных трубок поступает в верхнюю осадительную секцию 1 пылеуловителя, и затем, уже очищенный, через патрубок 3 выходит из аппарата. В процессе эксплуатации необходимо контролировать уровень отсепарированной жидкости и мехпримесей с целью их своевременного удаления продувкой через дренажные штуцеры. Контроль за уровнем осуществляется с помощью смотровых стёкол и датчиков, закреплённых к штуцерам 9. Люк 7 используется для ремонта и осмотра пылеуловителя при плановых остановках КС. Эффективность очистки газ циклонными пылеуловителями составляет не менее 100% дл частиц размером 40мкм и более, и 95% для частиц капельной жидкости.

В связи с невозможностью достичь высокой степени очистки газа в циклонных пылеуловителях появляется необходимость выполнять вторую ступень очистки, в качестве которой используют фильтр-сепараторы, устанавливаемые последовательно после циклонных пылеуловителей (рис.5)

 

Работа фильтр-сепаратора осуществляется следующим образом: газ после входного патрубка с помощью специального отбойного козырька направляется на вход фильтрующей секции 3, где происходит коагуляция жидкости и очистка от механических примесей. Через перфорированные отверстия в корпусе фильтрующих элементов газ поступает во вторую фильтрующую секцию - секцию сепарации. В секции сепарации происходит окончательная очистка газа от влаги, которая улавливается с помощью сетчатых пакетов. Через дренажные патрубки мехпримеси и жидкость удаляются в нижний дренажный сборник и далее в подземные ёмкости.

 

Для работы в зимних условиях фильтр-сепаратор снабжён электрообогревом его нижней части, конденсатосборником и контрольно-измерительной аппаратурой. В процессе эксплуатации происходит улавливание мехпримесей на поверхности фильтр-сепараторе. При достижении перепада, равного 0,04 МПа, фильтр-сепаратор необходимо отключить и произвести в нём замену фильтр-элементов на новые.

Как показывает опыт эксплуатации газотранспортных систем, наличие двух степеней очистки обязательно на станциях подземного хранения газа, а также и на первой по ходу линейной компрессорной станции, принимающей газ из СПХГ. После очистки, содержание механических примесей в газе недолжно превышать5 мг/м3.

Газ, поступающий на головные компрессорные станции из скважин, как отмечалось, практически всегда в том лили ином количестве содержит влагу в жидкой и паровой фазах. Наличие влаги в газе вызывает коррозию оборудования, снижает пропускную способность газопровода. При взаимодействии с газом при определённых термодинамических условиях, образуются твёрдые кристаллические вещества-гидраты, которые нарушают нормальную работу газопровода. Одним из наиболее рациональных и экономичных методов борьбы с гидратами при больших объёмах перекачки является осушка газа. Осушка газа осуществляется аппаратами различной конструкции с использованием твёрдых (адсорбция) и жидких (абсорбция) поглотителей.

С помощью установок осушки газа на головных сооружениях уменьшается содержание паров воды в газе, снижается возможность выпадения конденсата в трубопроводе и образования гидратов.

 

3. Системы и схемы сбора, транспорта газа, их достоинства и недостатки

 






Дата добавления: 2016-07-18; просмотров: 8850; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.046 сек.