Тема 18. Технология разведенгия и выращивания рыб в установках с замкнутым циклом водообеспечения


В настоящее время основную часть рыбы выращивают в прудах, где земля является естественной основой производства, важнейшим элементом биологического процесса. В индустриальном рыбоводстве (садки, бассейны) естественные свойства земли как элемента самого производства утрачивают свое значение. Кроме того, выращивание рыбы в прудах, садках, бассейнах зависит от внешних факторов среды. Производство рыбы в прудах требует достаточно больших расходов воды – до 30 тыс.м3, а в бассейнах – до 10 тыс.м3 на 1 т рыбы.

При выращивании рыбы в бассейнах при плотности 100 кг/м3 и более возникает необходимость ее очистки перед сбросом в водоемы. Все это приводит к тому, что лимитирующими факторами в увеличении производства рыбы выступают земля, вода и окружающая среда.

Новым направлением в индустриальном рыбоводстве становится выращивание рыбы в условиях с замкнутым циклом водообеспечения (УЗВ), представляющее принципиально новую форму связи между производством рыбы и окружающей средой. В УЗВ вода, выходящая из рыбоводных емкостей, проходит очистку, насыщается кислородом и возвращается обратно. При этом лимитирующие факторы производства рыбы утрачивают свое значение. Остается один – корма соответствующего качества.

Выращивание рыбы в УЗВ в отличие от традиционных методов рыбоводства обеспечивает круглогодичное производство, значительную рыбопродуктивность (от 0,3 до 1 т/м3 в год) при затратах воды от 0,1 до 0,2 тыс.м3 в год на 1 т, сводит до минимума потери комбикормов, поддается механизации вплоть до полной автоматизации всех процессов, позволяет создавать как крупные рыбоводные комплексы, так и отдельные установки, которые могут быть использованы в условиях любых производств в виде подсобных хозяйств для получения товарной рыбной продукции. Кроме того, производство находится непосредственно в местах потребления, что исключает транспортные расходы на большие расстояния. Именно эти предпосылки вызвали интерес к выращиванию рыбы в УЗВ в последнее время во всем мире.

Следует отметить, что отходы выращивания рыбы из УЗВ можно улавливать и использовать в виде удобрений или дополнительных компонентов корма, а не выбрасывать как обычно в канализацию или в водоемы, что способствует их постоянной эвтрофикации, т.е. открывает путь к безотходному производству продукции. Таким образом, эксплуатация УЗВ открывает путь к безотходному производству рыбной продукции.

В УЗВ, как правило, входят: рыбоводные емкости, устройства для очистки и аэрации воды, кормораздатчики, приборы для контроля и управления параметрами качества воды. В случае, когда источник подпитываемой воды не отвечает рыбоводным требованиям, вводится блок водоподготовки.

Основным устройством в установке замкнутого водообеспечения является блок очистки воды, который служит для удаления из оборотной воды взвесей (остатки корма, экскременты рыбы, отработанный ил и биопленка), растворенных метаболитов рыб.

Принцип действия блоков очистки, его конструктивные особенности зависят от положенного в его основу метода очистки. Большинство применяемых методов можно разделить на четыре группы: 1) физические, 2) химические, 3) физико-химические, 4) биологические. Наиболее эффективным оказался биологический метод. Принципиально этот метод реализуется в двух направлениях: в качестве блока биологической очистки используются аэротенки и биофильтры, где рабочим элементом являются соответственно взвешенный ил и прикрепленная биопленка. Основной недостаток аэротенков – их большие габариты. После рыбоводных бассейнов, с точки зрения водоочистки, вода выходит условно чистой. Получить необходимую концентрацию ила в аэротенках сложно, поэтому для нормальной работы установки на базе аэротенка его объем должен превышать объем рыбоводных емкостей в 7-10 раз.

Определенный интерес представляет блок очистки, разработанный специалистами Верх-Исетского металлургического завода во главе с Ю.В. Бобылевым. Этот блок получил название интегратора. Конструкция интегратора позволяет создать в нем слой взвешенного ила необходимой концентрации и тем самым уменьшить объем очистной емкости, который тем не менее превышает объем рыбоводных бассейнов в 3 раза. В настоящее время на предприятиях различных ведомств в качестве подобных устройств применяют несколько рыбоводных установок, использующих интеграторы.

Наиболее перспективным считается использование в качестве блока биологической очистки биофильтра, основной особенностью которого является то, что его рабочее тело – биопленка – прикрепленная к наполнителю, благодаря чему объем биофильтра всего в 1,5-2 раза превышает объем рыбоводных емкостей В мировой практике разработано большое количество разнотипных биофильтров различной производительности. Из зарубежных наиболее удачным является биофильтр западногерманской фирмы "Штелерматик". Рабочее тело представляет собой биопленку, закрепленную на вращающихся дисках, и взвешенный ил. В зависимости от необходимой производительности установки выпускаются блоками различными по размеру и количеству секций.

ВНИИПРХом совместно с Ленинградским инженерно-строительным институтом (ЛИСИ – ныне СПИАГУ) разработан биофильтр производительностью 10 м3/ч оборотной воды. В процессе апробации этого биофильтра все блоки показали хорошую работоспособность, ему отдано предпочтение из-за меньших габаритов, простоты конструкции и возможности увеличения производительности. В биофильтре в качестве наполнителя используется перфорированная пленка. Верхняя часть его орошаемая, а нижняя - погружная, он имеет зоны нитрификации и денитрификации. Для более стабильной работы всех биофильтров необходимо предварительно очищать воду от механических примесей.Для этой цели можно использовать первичный отстойник, однако это приводит к резкому увеличению габаритов установки.

Задачей блока регенерации является насыщение воды кислородом, поддержание заданной температуры, регулировка рН. Для этой цели, как правило, служат самостоятельные узлы.

Для насыщения воды кислородом применяются аэраторы и оксигенаторы. Для поддержания температуры воды на нужном уровне используют бойлеры вода-вода, пар-вода или электронагревательные элементы. Возможна непосредственная подача пара в воду. В каждом конкретном случае это определяется видом теплоносителя, имеющимся в наличии на предприятии.

Рыбоводные емкости в УЗВ несколько отличаются от традиционных горизонтальных бассейнов, уровень воды в которых обычно устанавливается на высоте 80-100 см. Для более рационального использования объемов помещений, удобств обслуживания следует использовать силосы – цилиндрические бассейны диаметром 1,5-2 и высотой 2-3 м с конусным основанием. В таких бассейнах практически весь корм потребляется рыбой, полнее используется растворенный в воде кислород, улучшается процесс самоочистки.

Для нормальной работы УЗВ необходим контроль и управление параметрами оборотной воды: температурой, содержанием растворенного в воде кислорода, аммиака, нитритов, нитратов, рН. Пока это самое узкое место. Для автоматического контроля необходимы соответствующие приборы.

При выращивании рыбы в УЗВ особое внимание следует уделять процессу кормления. В основном используются корма типа РГМ и 16-80. Практика показала, что кормление следует производить 24-30 раз в сутки продолжительностью 5-10 мин. Корм, задаваемый малыми дозами, полнее потребляется рыбой и практически не выносится из бассейна. Для этой цели в настоящее время применяются специальные автоматические кормушки нескольких модификаций, которые можно будет использовать как для выращивания посадочного материала, так и товарной рыбы.

На основе опыта практического применения разработан головной образец серийной установки для круглогодичного выращивания рыбопосадочного материала карпа

Эта установка может быть использована как самостоятельно, так и в составе рыбоводных комплексов в кооперации с прудовыми, садковыми и бассейновыми хозяйствами. Подрощенная молодь (до 2 г) может быть получена в оптимальные сроки для прудовых хозяйств любой климатической зоны, молодь массой до 10-50 г может быть использована для обеспечения УЗВ, бассейновых и садковых тепловодных хозяйств.

Установка ВНИИПРХ – СПИАГУ построена в 1986 г. и обладает мощностью 10 т рыбопосадочного материала, занимает площадь 140 м2 , объем воды равен 60 м3 , объем рыбоводных емкостей составляет 24 м3, в том числе 4 силоса по 4 м3 и 4 силоса по 8 м3 и емкость для адаптации рыбы 3 м3. Ее установочная мощность составляет 19 кВт/ч, расход топлива на подогрев воды 7 тыс ккал/ч, расход кислорода 2160 м3/год, общий объем оборотной воды в системе 480 м3/сут, а расход подпиточной воды равен 5880 м3/год.

Система регенерации воды состоит из отстойника диаметром 2 м и высотой 2,55 м, биофильтра емкостью 37,5 м3, бактерицидной установки, оксигенатора, компрессора, бойлеров. Циркуляцию воды в системе обеспечивают 2 насоса, один из которых резервный. Для насыщения воды кислородом используется генератор кислорода "Ксорбокс" (Швеция). Обслуживание с металлических мостков, для перемещения грузов используют электротельферы, а при кормлении применяют автоматические кормушки. Ее проектная мощность зависит от конечной массы выращенной рыбы и длительности ее выращивания (табл. 96). Это условие относится и к выращиванию молоди (табл. 97)

Таблица 96

Продолжительность выращивания ремонтного поголовья и содержания

производителей в установке с замкнутым циклом водоснабжения объемом 24 м3

 

Масса рыб, г Продолжительность периода, сут Количество, шт. Общая масса,, кг Отбор, %
0,0015-1 0,5 -
1-50 24,0
50-500 120,0
500-1000 120,0 -
1000-2000 240,0
2000-3500 105,5 -

 

Таблица 97

Проектная мощность установки для молоди карпа в зависимости от продолжительности выращивания

 

  Масса рыбы, г   Количество, тыс. шт.   Общая масса, т Длительность выращивания, сут
0,3
2,0
8,0
Всего 10,3 -

 

Получение продукции предусмотрено в 4 цикла в год. Норматив использования 10,3 т = 24 м3 = 429 кг/м3 в год.

Широко известны следующие типы фильтров: 1) капельные, 2) погружные, 3) вертикальные, 4) с вращающимися дисками.

В капельных биофильтрах вода поступает сверху и под действием силы тяжести проходит через него с такой скоростью, что не покрывает наполнитель, хотя все внутренние части фильтра остаются постоянно смоченными. Крупные капельные фильтры оборудованы вращающимися устройствами, которые равномерно распределяют воду над наполнителем (гравий, ракушечник). Капельные фильтры могут размещаться в несколько ярусов (полочный биофильтр).

Погруженные биофильтры по конструкции сходны с фильтрами грубой очистки, однако в них есть среда, на которой развиваются бактерии. Вода входит с одного конца фильтра, проходит через наполнитель и выходит с противоположного конца.

В вертикальных фильтрах вода поступает в нижнюю часть, проходит вверх через наполнитель и выходит из верхней части. В этот фильтр может быть встроен фильтр грубой очистки, который расположен ниже уровня поступления воды.

Во всех биофильтрах наблюдается тенденция к накапливанию взвешенного вещества по мере того, как масса бактерий отделяется от стенок и наполнителя. В связи с этим рекомендуется в днище фильтра устраивать сливной клапан, через который по мере необходимости удаляется накопившийся осадок.

В фильтре с вращающимся диском наполнитель перемещается через воду, в то время как в погруженных, капельных и вертикальных фильтрах он неподвижен. Фильтр состоит из большого числа вращающихся пластин, насаженных на общую ось. На этих пластинах развиваются бактерии. Попеременное поступление в емкость воды, загрязненной продуктами обмена и воздуха, обеспечивает постоянное снабжение бактерий питательными веществами и кислородом.

В России разработаны блоки биологической очистки воды производительностью 10, 20 и 80 м3 оборотной воды в 1 ч. В качестве наполнителя в них используется перфорированная пленка. Верхняя часть фильтра орошаемая, нижняя – погружная. Фильтр имеет зоны нитрификации и денитрификации. На базе этих фильтров разработаны установки с замкнутым циклом водоиспользования для выращивания посадочного материала и товарной рыбы.

Задачами блока регенерации воды являются насыщение воды кислородом, поддержание заданной температуры и регулирование рН. Для насыщения воды кислородом применяются аэраторы и оксигенаторы. В первом случае используется кислород воздуха, во втором – свободный кислород. Оксигенатор представляет собой вертикальный бак, в который под давлением подается кислород, сверх поступает вода, которая разбрызгивается или, если оксигенатор с наполнителем, омывает его, собирается в нижней части и подается на выход. Он состоит из цилиндра диаметром 1,6 м, высотой 8 м. Поступающая в него вода через распределители падает на решетчатую деревянную насадку, которая дробит воду на мелкие струи. Кислород в оксигенатор подается снизу и распыляется через мелкопористые керамические блоки. Такой оксигенатор имеет хорошую эффективность использования кислорода – до 96 %. При единовременной ихтиомассе в установке, равной 10 т, расходуется 3 м3/ч кислорода.

Насыщенная кислородом вода из оксигенатора поступает в рыбоводные бассейны из расчета 60-110 м3/ч воды или 2-4 л/с на 1 т ихтиомассы. На очистку направляется не вся отводимая из бассейнов вода, а только 20-50 % ее. Остальная вода, минуя очистные сооружения, поступает в приемный бак перед насосами.

Температура воды в установке 22-250С. Содержание кислорода в воде на выходе в бассейны 25-30 мг/л, на выходе – не менее 6 мг/л. Удельный расход кислорода составляет 0,04-0,08 мг О2/с на 1 кг ихтиомассы. Для поддержания нужной температуры воды используют бойлеры или электронагревательные приборы.

Качество воды в установке с замкнутым циклом водоснабжения необходимо контролировать путем отбора проб из выходящей после фильтра воды ежедневно. При ухудшении очистки воды в биофильтре необходимо изменить количество воды, проходящей через него, увеличить подачу воздуха или кислорода, добавить наполнитель или уменьшить плотность посадки рыбы.

В оборотной воде могут аккумулироваться такие токсичные для рыб вещества, как аммоний (NH4), нитриты (NO2), нитраты (NО3) и др. Наибольшую опасность для рыб представляет собой аммиак (NH3) (табл 98).

Таблица 98

Количество свободного аммиака, образующегося в воде в зависимости от рН и температуры вода, в %

 

  рН Температура воды, 0С
0,0125 0,0186 0,0274 0,0397 0,05 0,06
6,5 0,0395 0,0586 0,865 0,125 - -
7,0 0,394 0,586 0,859 1,24 0,49 0,57
8,0 1,23 1,83 2,67 3,82 4,70 5,38
8,5 3,08 5,60 8,00 11,10 13,50 15,30

 

Для устранения токсических веществ в установки вводят узел денитрификации.

В некоторых установках с замкнутым циклом водоснабжения используют вторичный отстойник, или осветлитель. По конструкции он не отличается от первичного и предназначен для сбора твердых взвешенных веществ, прошедших через биофильтр. При наличии устройств по очистке воды от взвешенных веществ перед биофильтром и после него количество взвешенных частиц в рыбоводных бассейнах не превышает 25 мг/л, что не вызывает ухудшения физиологического состояния у рыб.

Добиться удаления нитратов, фосфатов и взвешенных частиц можно включив в систему водные растения. Блок с ними располагают сразу за фильтром или окончательным осветлителем либо помещают их в осветлитель. Для этого можно использовать водный гиацинт (Eichhornia crassiper) или водяной китайский каштан (Eleocharis dulch). Каждое из этих растений быстро растет и эффективно извлекает из воды различные вещества.

По качеству вода должна соответствовать воде, используемой в прудовых форелевых и карповых хозяйствах, но по азотистым соединениям и количеству взвешенных частиц при рН 6,5-7,5 к ней предъявляются несколько иные требования ( табл. 99)

Таблица 99

Количество азотистых соединений и взвешенных веществ, допустимое в установках с замкнутым циклом водоснабжения, мг/л

 

Название вещества Карп Форель
Инкубация икры и выдерживание личинок
NH4 - NH3 2,0 0,5
NO2 0,12 0,12
NO3 5-10
Взвесь 5-10 До 10
Выращивание молоди
NH4 - NH3
NO2 0,2 0,12
NO3 До 60 До 55
Взвесь До 30 До 20
Выращивание товарной рыбы
NH4 - NH3 6,0 2,5
NO2 0,3 0,2
NO3 До 60
Взвесь До 60 До 25

 

Известны замкнутые установки для выращивания посадочного материала или товарной продукции по круглогодичной или полицикличной технологии.

На основе установки ВНИИПРХ была запроектирована опытная автоматизированная линия на 50 т рыбопосадочного материала, состоящая из шести 10 т установок – 5 для рыбопосадочного материала – 1 для производителей (на 100 гнезд), 2 здания арочной конструкции длиной 75 , шириной 15 м и высотой 8,3 м, соединенные переходной галереей. Эта установка в рыбхозе "Бисерово" была не достроена. Мощность 51,5 т в год, в т.ч. 1,5 млн. шт. 1 г молоди (1,5 т), 1 млн. шт. 10 г молоди (10 т) и 800 тыс. шт. 50 г молоди карпа (40 т). Предусматривалось проведение 10 циклов – 50 млн шт. карпа, с 1 м3 планировался выход 4,3 т рыбопродукции. Окупаемость планировалась за 11 лет.

Под круглогодичной технологией следует понимать круглогодичное использование с целью поочередного производства посадочного материала разных видов рыб. Например, в б. ГДР установки использовали для поочередного подращивания форели камлоопс, радужной форели, крпа, растительноядных рыб и др. При зарыблении установки разноразмерным посадочным материалом можно в течение года осуществлять многоразовый съем продукции. В обоих случаях регулируют плотность посадки, которая обеспечивала бы равномерную органическую нагрузку биофильтра.

При полицикличной технологии выращивание осуществляется в несколько циклов, завершающихся получением конечной рыбной продукции. Например, при 2- 3-цикличном производстве товарной рыбы происходит 2 – 3-кратное зарыбление рыбоводных емкостей посадочным материалом, при этом продолжительность цикла от зарыбления до выхода товарной рыбы составляет от 4 до 6 мес.

Полицикл при производстве посадочного материала обеспечивается регулярным получением потомства от производителей карпа, причем от одних и тех же самок можно получать икру до четырех раз за сезон. Продолжительность одного цикла равна 60 сут. Количество получаемой икры равно 60-100 тыс. шт.

При производстве посадочного материала карпа целесообразно организовывать хозяйства индустриального типа, включающие участок выращивания и содержания производителей, а также участок инкубации и подращивания молоди. При производстве форели цикл выращивания целесообразно начинать с икры, завозимой из других хозяйств.

Продолжительность цикла выращивания от личинки до производителя равна 460 сут. При этом нагрузка на биофильтр достигает 800-1040 кг.

Подращивание молоди до массы 50 мг осуществляют при температуре воды 27-280С, плотность посадки 100-200 тыс. шт./м3, расход воды 0,05 л/с на 1 кг массы рыбы (аэрация воздухом). При использовании чистого кислорода расход воды может быть уменьшен в 10 раз.

Кормят молодь науплиусами артемии салина и гранулированным кормом РК-С с размером крупки 0,25-0,5 мм. Продолжительность выращивания равна 10 сут. В 1-й день личинки получают (200 % ихтиомассы) живой корм, к 10-му дню его количество уменьшают до 10 %. За этот период суточный рацион корма РК-С уменьшают с 75 до 25 %. Науплиусы артемии задают молоди 7-8 раз в сутки, РК-С при ручной раздаче до 48 раз в сутки, при использовании автокормушек – через каждые 5-10 мин. В емкостях типа "Силос" чистку проводят 1 раз в сутки.

Вырашивание молоди массой от 50 мг до 1 г проводят при температуре 27-280С, плотности посадки 30 тыс. шт./м3, расходе воды 0,05 л/с на 1 кг массы рыбы. Кормят рыб кормом РК-С с размером крупки 0,5-1,5 мм. Суточный рацион постепенно уменьшают с 20 до 8 % массы рыбы. Раздают корм вручную через каждые 30 мин в течение 18 ч или с помощью кормораздатчиков. По достижении массы молоди 0,3 г можно применять автокормушки "Рефлекс". Чистят емкости 1 раз в сутки. За 20 сут масса молоди должна достичь 1 г при конечной рыбопродукции 29-30 кг/м3

Выращивание молоди массой от 1 до 10 г проводят при температуре воды 26-270С, с плотностью посадки 5-10 тыс. шт/м3. Рыбу кормят кормом РГМ-6М или РГМ-5В. 12-80 с размером крупки 1,5-2 мм. Суточный рацион уменьшаю с 8 до 4 % массы тела. Раздают корм автоматами или вручную до 18 раз в сутки. Продолжительность выращивания 20 сут.

Выращивание молоди массой до 50 г осуществляют при температуре 24-250С, плотности посадки 2,0-2,5 тыс. шт/м3. Рыбу кормят гранулированным кормом РГМ-5В или 12-80 с диаметром гранул 3,2 мм. Суточный рацион составляет 2,5 % ихтиомассы, раздача корма – до 12 раз в сутки. За 30 сут выращивания конечная рыбопродукция может достигнуть 100-120 кг/м3.

18. 1. Выращивание рыбы в рыбоводной компактной установке "ВИЗ-РКУ(к)-240"

В подсобном хозяйстве Верх-Исетского металлургического завода с 1979 г.создана высокоэффективная рыбоводная установка для выращивания рыбы промышленным способом. Эта установка отличается простотой конструкции, надежностью в эксплуатации , применением отечественных типовых сооружений для очистки воды, эффективностью работы. Установка получила название "ВИЗ – РКУ (к)-240".

В установку входят: шесть рыбоводных бассейнов по 10 м3 каждый, типовые очистные компактные сооружения типа КУ, приемный резервуар, два насоса, оксигенатор. Площадь, занимаемая установкой со вспомогательным оборудованием, составляет 120 м2

Установка оснащена аварийной системой подачи кислорода и воздуха в бассейн с рыбой, которая в случае остановки насоса включается автоматически. Максимальная ихтиомасса в установке составляет 15 т карпа.

Рыбоводные бассейны представляют собой прямоугольные баки с коническим днищем, их размеры – 2,5х3 м, высота бассейна 2 м. Общий объем рыбоводных бассейнов 60 м3. Плотность посадки карпа до 250 кг/м3, соотношение рыбы в бассейне к его объему составляет 1:4.

Для очистки оборотной воды от загрязнений, поступающих в нее в процессе жизнедеятельности рыбы, применена типовая компактная установку КУ. Эта установка представляет собой аэротенк со встроенным вторичным отстойником. Размеры аэротенка 15х6х2 м, объем 180 м3. Общий объем воды в установке 240 м3.

Очистка воды осуществляется в следующем порядке: вода из рыбоводных бассейнов самотеком поступает в аэрируемую зону КУ, где вступает в контакт с активным илом. Рабочая концентрация активного ила в этой зоне составляет 3-5 г/л.

Ил перемешивается воздухом , распыляемым через фильтросные трубы. В зоне аэрации органически связанный азот из остатков комбикорма и выделений рыб переводится в аммоний, который затем превращается в две ступени в не токсичные для рыб соли азотной кислоты. На первой ступени аммоний с помощью бактерий нитрозомонас переводится в нитриты по формуле

2NH4 + 2ОН + О2 =2NO2 + 2Н+ + 4Н2О

Вторая ступень нитрификации протекает с помощью нитробактера по формуле

2NO2- + О2 = 2NO3-

Из зоны аэрации смесь оборотной воды с активным илом поступает во встроенный отстойник через щель в нижней части конуса, где происходит осаждение ила, фильтрация воды через взвешенный слой ила и денитрификация – восстановление NO2- и NO3- до N2 или N2О.

Химические показатели воды в установке поддерживаются на уровне, принятом на ВИЗе, что обеспечивает в свою очередь темп роста карпа, соответствующий нормативам ГосНИОРХа для тепловодных хозяйств.

Осветленная и прошедшая стадию денитрификации вода отводится из отстойника водосбросными лотками в приемный резервуар насосных агрегатов.

Величина УРК является одним из основных технологических показателей и свидетельствует о возможном физиологическом состоянии рыбы в установке.

Использование технического кислорода и усиление проточности позволяет увеличить уровень продуктивности современных хозяйств (в частности форелевых) в 20-30 раз.

Зарыбление установки производится с учетом многоразового съема товарной рыбы. Для этого бассейны зарыбляются разноразмерным по массе посадочным материалом, Производительность установки определяется начальной индивидуальной массой посадочного материала и составляет 15-45 т товарной рыбы в год при конечной средней массе 1,2-1,7 кг. Длительность одного цикла составляет 120-150 сут.

Кормление карпа в установке осуществляется при помощи автокормушек. Применяется комбикорм рецептов 16-80 и К-110.

Затраты комбикорма составляют 1,5-2,5 кг на 1 кг прироста карпа. Себестоимость 1 ц товарной рыбы 110-120.

Установка ВИЗ-РКУ(к) – 240 признана изобретением (Автор. свид. № 1126263).

18.2.Выращивание рыбы в установке с замкнутым циклом водообеспечения "Штелерматик"

Индустриализация и повышение эффективности современного промышленного рыбоводства приводят к созданию циркуляционных замкнутых систем с управляемым технологическим процессом. Такая установка разработана в 1977 г. Тео Штелером и производится западногерманской фирмой "Рейнтехник". Установка представляет собой циркуляционную систему для выращивания карпа, форели, угря или канального сомика с подогревом, очисткой и биологическим восстановлением воды для непрерывного действия. Установка состоит из окислительного бассейна, бассейна-отстойника, 6-8 прямоточных бассейнов для содержания и выращивания рыбы, циркуляционного насоса, компрессора, пульта управления. Площадь, занимаемая установкой, составляет 100-150 м2, необходимая высота – 3,0 м, количество циркулирующей воды – 50 м3, пополнение – от 1 до 5% объема в день. Производительность установки (в год) – 12 т радужной форели или 10,2 т угря, или 7,2 т канального сомика, или 12 т карпа. При аэрации воды чистым кислородом производительность установки удваивается.

Для содержания и выращивания рыбы, независимо от вида и возраста, используются стандартные унифицированные бассейны, представляющие собой прямоточные прямоугольные емкости с почти вертикальными стенками размером по дну 3,5х1,0 м и высотой 1,0 м. Глубина наполнения бассейна в зависимости от массы и возраста рыбы изменяется от 0,4 м до 0,6 м. Бассейны устанавливают с незначительным уклоном (падение дна от места подачи воды до сливного отверстия всего 5 см). Поддержание необходимого по условиям выращивания рыбы уровня воды в бассейнах осуществляется поворотными трубами, на которых предусмотрены цилиндрические затворы с пневмопроводом, обеспечивающие быстрый сброс воды из бассейна без опускания самой поворотной трубы. Управление затворами автоматическое, установка поворотных труб производится вручную. Для изготовления бассейнов используется стеклопластик армированный деревянными брусьями и досками.

Окислительный бассейн представляет собой прямоугольную емкость с вертикальными стенками и вогнутым дном. Размер бассейна в плане 5,0х2,4 м. высота от уровня пола 2,0 м. Емкость 10 м3. В окислительном бассейне располагается вращающийся барабан с 16 биофильтрами. Каждый из биофильтров представляет собой перфорированную трубу диаметром 250 мм из пластика (типа поливинилхлорида), заполненную ребристыми полиэтиленовыми дисками. Барабан с биофильтрами через клиноременную одноступенчатую передачу приводится в действие небольшим электродвигателем мощностью 0,37 кВт.

Бассейн-отстойник представляет собой цилиндрическую емкость с вогнутым дном, внешний диаметр отстойника составляет 2,7 м, высота около 2,0 м, полезный объем свыше 9 м3. Верхняя кромка опоясывается кольцевым лотком. Для концентрации осадка в нижней части конического дна отстойника предусмотрен вращающийся скребок, приводимый в действие электромотором через редуктор.

Система автоматического регулирования обеспечивает заданные стабильные условия среды при выращивании рыбы. В бассейны непрерывно подается биологически чистая регенерированная вода температурой 25оС с содержанием кислорода до 15 мг/л. Столь высокое содержание кислорода достигается благодаря использованию для аэрации чистого кислорода, а также благодаря простому и эффективному специальному приспособлению, позволяющему обеспечить перенасыщение воды кислородом при экономном его расходовании

Приспособление представляет собой короб из листовой нержавеющей стали, опрокинутый вверх дном, нижняя открытая часть которого погружена ниже уровня воды в водоподающем лотке, на глубину порядка 0,4-0,6 м. Нижняя кромка короба не доходит до дна водоподающего лотка на 0,15-0,20 м. В этот короб выпускается вода, прошедшая очистку в окислительном бассейне и отстойнике, и подается кислород. Вода, насыщенная кислородом, вытекает из короба под уровень. При этом истечение происходит без образования пузырей, что обычно бывает при аэрации с помощью компрессоров с перфорированными шлангами или фильтросными пластинами, погруженными в воду бассейнов. Штелер считает, что приспособление обеспечивает растворение свыше 90% подаваемого кислорода.

При прохождении через бассейны с рыбой вода теряет часть кислорода и загрязняется продуктами обмена. Замеры показывают, что содержание кислорода в бассейне на половине длины снижается на 3-5 мг/л, однако даже в конце бассейна остается не менее 7-8 мг/л. На выходе из бассейна насыщение кислородом несколько превышает нормальное при температуре 25оС. Проводимые Штелером эксперименты показывают, что в бассейнах при соотношении массы рыбы к массе воды 1:4 и даже 1:3 столь высокое насыщение кислородом обеспечивает нормальный рост рыбы.

Загрязненная продуктами обмена вода из бассейнов самотеком поступает в приямок-зумпф, расположенный под полом бассейнового цеха, откуда с помощью циркуляционного насоса подается в окислительный бассейн. Здесь насыщенная органикой вода перемешивается и аэрируется. Барабан с трубчатыми фильтрами медленно вращается, трубы поочередно погружаются в воду, захваченный ими воздух вырывается через щели в трубах, вызывая дополнительное перемешивание воды с одновременной аэрацией. При этом создаются благоприятные условия для жизнедеятельности нитрифицирующих бактерий, переводящих соли аммония и нитриты в нитраты, не токсичные для рыб. Огромная поверхность ребристых дисков биофильтров обеспечивает перемешивание и аэрацию практически всего объема воды, заполняющего окислительный бассейн.

Из окислительного бассейна вода подается в бассейн-отстойник, в котором твердые вещества, содержащиеся в воде, оседают на дно. Твердый осадок из самых нижних слоев может быть сброшен в специальную емкость или на иловую площадку для просушивания и последующей утилизации. Вода с большим содержанием взвеси и неразложившейся органики из придонных слоев в отстойнике частично сбрасывается в подпольный приямок-зумпф и вступает в повторный цикл окисления и очистки. Осветленная вода из верхней части отстойника собирается кольцевым лотком и направляется в рыбоводные бассейны по самотечному трубопроводу.

Обращает на себя внимание крайне незначительный расход воды в системе. В бассейне с объемом воды не более 2 м3 содержали до 200 кг рыбы в каждом. При часовом водообмене удельное водопотребление составляло около 0,3 л/c/ц.

Столь низкое удельное водопотребление объясняется прежде всего высоким содержанием в воде кислорода. Аэрация воды в системе осуществляется постоянно как в окислительном бассейне и водоподающем лотке, так и в самих рыбоводных бассейнах, на дно которых уложены перфорированные воздуховоды, соединенные с компрессором.

Важным фактором, снижающим удельное водопотребление, является хорошее санитарное состояние бассейнов, в которых практически отсутствует твердый осадок. Это объясняется прежде всего применением плавающих гранулированных кормов высокого качества, наличием строгого контроля поедаемости и весьма высокой плотности посадки рыбы, которая своим движением препятствует оседанию экскрементов на дно бассейна. Периодические промывки бассейнов (1-2 раза в час), связанные со снижением уровня воды в них до 10-20 см, также способствуют поддержанию хорошего санитарного состояния бассейнов.

При выращивании рыбы рекомендуется ротационная система, т.е. система последовательного многократного использования емкостей по мере роста рыбы и реализации ее части, достигшей товарного веса. Одновременно в установке содержится 2 т рыбы, если аэрация воды осуществляется воздухом, или 4 т рыбы, если аэрация осуществляется чистым кислородом. В течение месяца масса рыбы в установке удваивается, поэтому на начало каждого месяца в бассейнах должно находиться не более 1-2 т рыбы (соответственно принятому способу аэрации воды воздухом или кислородом), с тем чтобы к концу месяца ее было не более 2-4 т. Следовательно, ежемесячный прирост продукции составит 1-2 т, или 12-24 т в год. Продолжительность выращивания карпа до товарной массы на сухих гранулированных кормах не превышает 4 мес., что позволяет провести не менее 3 циклов в год. Максимальная производительность бассейна составляет до 500 кг товарного карпа в месяц. Так как установка рассчитана на непрерывный процесс работы, в бассейнах должна находиться одновременно рыба различных размерно-массовых групп от молоди до товарной рыбы.

Установка оборудована системами автоматического контроля и управления температурным и кислородным режимами переносными термооксиметрами.

Установки системы "Штелерматик" работают, как правило, на водопроводной воде из сети или артезианской скважины. Ввиду крайне незначительного водопотребления и ограниченных размеров установка может быть размещена практически в любом населенном пункте.

Циркуляционная система водоснабжения позволила резко снизить потребление тепла, поэтому подогрев воды с помощью небольшого бойлера (нефтяной колонки) оказался экономически целесообразным. Установленная мощность всех электроагрегатов (насосов, компрессора) около 8 кВт.

Общая стоимость установки составляла около 65 тыс. евро. Удельные капитальные затраты на 1 ц мощности установки составляли 350 руб. (в зависимости от применяемого метода аэрации). При размещении в одном здании нескольких установок удельные капитальные затраты могут быть значительно ниже.

По мнению Штелера, минимальное количество установок, эксплуатация которых будет экономически целесообразной – 4 шт. В г. Штульне такое количество установок с 24 бассейнами обслуживают трое рабочих (по одному в смену) и один бригадир. Рабочий раздает корма, следит за работой агрегатов, контролирует параметры среды. Он в совершенстве знает технологию, обучен обращению со <



Дата добавления: 2020-08-31; просмотров: 472;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.044 сек.