Химические формулы.
Химическая формула отражает состав вещества. Например, Н2О - два атома водорода соединены с атомом кислорода. Химические формулы содержат также некоторые сведения о структуре вещества: например, Fe(OH)3, Al2(SO4)3 - в этих формулах указаны некоторые устойчивые группировки (ОН, SO4), которые входят в состав вещества - его молекулы или формульной единицы.
Молекулярная формула указывает число атомов каждого элемента в молекуле. Молекулярная формула описывает вещества с молекулярным строением (газы, жидкости и некоторые твердые вещества). Состав вещества с атомной или ионной структурой можно описать только формульной единицамей.
Формульная единицауказывает простейшее соотношение между числом атомов разных элементов в веществе. Например, формульная единица бензола - СН, молекулярная формула - С6Н6.
Структурная (графическая) формула указывает порядок соединения атомов в молекуле и в формульной единице и число связей между атомами.
Валентность
Правильное написание таких формул основано на представлении о валентности (valentia - сила) как о способности атома данного элемента присоединять к себе определенное число других атомов. В современной химии рассматривается три вида валентности: стехиометрическая, электронная и структурная.
Стехиометрическая валентностьхимического элемента- это число эквивалентов, которое может к себе присоединить данный атом, или - число эквивалентов в атоме. Эквиваленты определяются по числу присоединённых или замещённых атомов водорода, поэтому стехиометрическая валентностьравна числу атомов водорода, с которыми взаимодействует данный атом. Но сводородом взаимодействуют не все элементы, а скислородом – практически все, поэтому стехиометрическую валентность можно определить как удвоенное число присоединённых атомов кислорода.
Например, стехиометрическая валентность серы в сероводороде H2S равна 2, в оксиде SO2 – 4, в оксиде SO3 –6.
При определении стехиометрической валентности элемента по формуле бинарного соединения следует руководствоваться правилом: суммарная валентность всех атомов одного элемента должна быть равна суммарной валентности всех атомов другого элемента.
Зная валентность элементов и это правило, можно составить химическую формулу соединения. При составлении формул следует соблюдать следующий порядок действий.
1. Пишут, в порядке возрастания электроотрицатальности, химические символы элементов, которые входят в состав соединения, например:
KO AlCl AlO
2. Над символами химических элементов проставляют их валентность (её принято обозначать римскими цифрами):
I II III I III II
KO AlCl AlO .
3. Используя вышесформулированное правило, определяют наименьшее общее кратное чисел, выражающих стехиометрическую валентность обоих элементов (2, 3 и 6, соответственно).
4) Делением наименьшего общего кратного на валентность соответствующего элемента находят числа атомов в формуле соединений:
I II III I III II
K2O AlCl3 Al2O3
Пример 15.Составить формулу оксида хлора, зная, что хлор в нем семивалентен, а кислород - двухвалентен.
Решение.Находим наименьшее кратное чисел 2 и 7 - оно равно 14. Разделив наименьшее общее кратное на стехиометрическую валентность соответствующего элемента, находим числа атомов: хлора 14:7 = 2, кислорода 14:2 =7. Таким образом, формула оксида – Cl2O7.
Степень окислениятакже характеризует состав вещества и равна стехиометрической валентности со знаком плюс (для металла или более электроположительного элемента в молекуле) или минус.
Рекомендуется использовать следующие правила определения степеней окисления.
1. В простых веществах степень окисления элементов равна нулю.
2. Степень окисления фтора во всех соединениях равна -1. Остальные галогены (хлор, бром, иод) с металлами, водородом и другими более электроположительными элементами тоже имеют степень окисления -1, но всоединениях с более электроотрицательными элементами они имеют положительные значения степеней окисления.
3. Кислород в соединениях имеет степень окисления -2; исключением являются пероксид водорода Н2О2 и его производные (Na2O2, BaO2 и т.п., в которых кислород имеет степень окисления -1, а также фторид кислорода OF2, степень окисления кислорода в котором равна +2.
4. Щелочные элементы (Li, Na, K и др.) и элементы главной подгруппы второй группы Периодической системы (Be, Mg, Ca и др.) всегда имеют степень окисления, равную номеру группы, то есть +1 и +2, соответственно.
5. Все элементы третьей группы, кроме таллия имеют постоянную степень окисления, равную номеру группы, т.е. +3.
6. Высшая степень окисления элемента равна номеру группы Периодической системы, а низшая – разности: № группы - 8. Например, высшая степень окисления азота (он расположен в пятой группе) равна +5 (в азотной кислоте и её солях), а низшая равна -3 (в аммиаке и солях аммония).
7. Степени окисления элементов в соединении компенсируют друг друга так, что их сумма для всех атомов в молекуле или нейтральной формульной единице равна нулю, а для иона - его заряду.
Эти правила можно использовать для определения неизвестной степени окисления элемента в соединении, если известны степени окисления остальных, и составления формул многоэлементных соединений.
Пример 16. Определить степень окисления хрома в соли K2CrO4 и в ионе Cr2O72-.
Решение.Степень окисления калия равна +1 (првило 4) а кислорода -2 (правило 3). Степень окисления хрома обохначаем Х. Для формульной единицы K2CrO4 имеем:
2∙(+1) + Х + 4∙(-2) = 0,
следовательно, степень окисления хрома Х = +6.
Для иона Cr2O72- имеем: 2∙Х + 7∙(-2) = -2, Х = +6.
Видим, что степень окисления хрома в обоих случаях одинакова.
Пример 17.Определить степень окисления фосфора в соединениях P2O3 и PH3.
Решение.В соединении P2O3 степень окисления кислорода равна -2. Исходя из того, что алгебраическая сумма степеней окисления молекулы должна быть равной нулю, находим степень окисления фосфора: 2∙Х + 3∙(-2) = 0, отсюда Х = +3.
В соединении PH3 степень окисления водорода равна +1, отсюда Х + 3∙(+1) = 0, Х = -3.
Пример 18.Напишите формулы оксидов, которые можно получить при термическом разложении перечисленных ниже гидроксидов (оснований и кислот): Fe(OH)3, Cu(OH)2, H2SiO3, H3AsO4, H2WO4.
Решение.Fe(OH)3 - заряд гидроксид-иона равен -1, следовательно, степень окисления железа равна +3 и формула соответствующего оксида - Fe2O3.
Cu(OH)2 - так как имеется два гидроксид-иона, суммарный заряд которых равен -2, то степень окисления меди равна +2 и формула оксида - CuO.
H2SiO3. Степень окисления водорода равна +1, кислорода -2, кремния – Х. Алгебраическое уравнение: 2∙(+1) + Х + 3∙(-2) = 0. Х = +4. Формула оксида – SiO2.
H3AsO4 - степень окисления мышьяка в кислоте вычисляется по уравнению:
3.(+1) + X + 4·(-2) = 0; X = +5.
Таким образом, формула оксида - As2O5.
H2WO4. Степень окисления волфрама, вычисленная таким же способом (проверьте!) равна +6. Следовательно, формула соответствующего оксида - WO3.
Химические элементы подразделяются на элементы постоянной и переменной валентности; соответственно первые имеют постоянную степень окисления в любых соединениях, а вторые – различную, которая зависит от состава соединения/
Рассмотрим, как с помощью Периодической системы Д.И. Менделеева можно определить степени окисления элементов.
Для устойчивых степеней окисления элементовглавных подгрупп наблюдается следующие закономерности.
1.У элементов I-III групп существуют единственные степени окисления - положительные, и равные по величине номерам групп, кроме таллия, имеющего степеи окисления +1 и +3.
2. У элементов IV-VI групп, кроме максимальной положительной степени окисления, соответствующей номеру группы, и отрицательной, равной разности между числом 8 и номером группы, существуют еще промежуточные степени окисления, обычно отличающиеся между собой на 2 единицы. Для IV группы степени окисления равны +4, +2, -4, -2; для V группы +5, +3, -3, -1; для VI группы - +6, +4, -2.
3. У элементов VII группы существуют все степени окисления от +7 до -1, различающиеся на две единицы, т.е. +7,+5, +3, +1 и -1. Но в этой группе (галогены) выделяется фтор, который не имеет положительных степеней окисления и в соединениях с другими элементами существует только в одной степени окисления -1.
Примечание. Известно несколько неустойчивых соединений хлора, брома и иода с четными степенями окисления +2, +4 и +6 (ClO, ClO2, ClO3 и др.).
У элементов побочных подгрупп нет простой связи между устойчивыми степенями окисления и номером группы. Для наиболее распространённых элементов лементов побочных подгрупп устойчивые степени окисления следует просто запомнить. К таким элементам относятся: хром Cr (+3 и +6), марганец Mn (+7, +6, +4 и +2), железо Fe, кобальт Co и никель Ni (+3 и +2), медь Cu (+2 и +1), серебро Ag (+1), золото Au (+3 и +1), цинк Zn и кадмий Cd (+2), ртуть Hg (+2 и +1).
Для составления формул трех- и многоэлементных соединений необходимо знать степени окисления всех элементов. При этом количество атомов элементов в формуле определяется из условия равенства суммы степеней окисления всех атомов нулю (в формульной единице) или заряду (в ионе). Например, если известно, что в формульной единице имеются атомы K, Cr и О со степенями окисления равными +1, +6 и -2, соответственно, то этому условию будут удовлетворять формулы K2CrO4, K2Cr2O7, K2Cr3O10 и многие другие; аналогично этому иону с зарядом -2, содержащему Cr+6 и O-2, будут соответствовать формулы CrO42-, Cr2O72-, Cr3O102-, Cr4O132- и т.д.
Электронная валентностьэлемента равна числу химических cвязей, образуемых атомом этого элемента.
В большинстве соединений электронная валентность элементов равна стехиометрической. Но имется немало исключений. Например, в пероксиде водорода H2O2 стехиометрическая валентность кислорода равна единице (на каждый атом кислорода приходится по одному атому водорода), а электронная – двум, что следует из структурной формулы, которая показывает химические связи атомов: Н–О–О–Н. Несовпадение значений стехиометрической и электронной валентности объясняется в этом случае тем, что атомы кислорода связаны не только с атомами водорода, но и между собой.
Таким образом, имеются химические соединения, в которых стехиометрическая и электронная валентности не совпадают. К ним, например, относятся комплексные соединения.
Структурная (координационная) валентность,или координационное число определяется числом соседних атомов. Например, в молекуле SO3 у серы число соседних атомов кислорода равно 3 и структурная валентность и координационное число равно 3, тогда как стехиометрическая валентность равна 6.
Электронная и координационная валентности более подробно рассматриваются в главах «Химическая связь» и «Комплексные соединения».
Дата добавления: 2016-07-05; просмотров: 6870;