Свойства z-преобразования


Линейность: если и , то , где область сходимости равна, по крайней мере, пересечению областей сходимости и .

Сдвиг: если , то .

Умножение на экспоненциальную последовательность: .

Дифференцирование: .

Свертка последовательностей: если - свертка двух последовательностей и , то z-преобразование равно произведению z-преобразований и , т.е. если , то .

Теорема о комплексной свертке. В непрерывном случае свертка временных функций приводит к произведению преобразований Фурье и, аналогично, свертка преобразований Фурье получается из произведения временных функций.

В случае последовательностей и z-преобразований нельзя ожидать такого соотношения из-за того, что последовательности дискретны, а их z-преобразования непрерывны. Однако можно вывести похожее соотношение: если , то .

Соотношение Парсеваля. Известно соотношение Парсеваля для преобразования Фурье. Обобщение этого соотношения на z-преобразование следует из теоремы о комплексной свертке. В частности, мы рассмотрим две комплексные последовательности и . Тогда соотношение Парсеваля утверждает, что

. (1.43)

Контур интегрирования выбирается в пересечении областей сходимости и .

Передаточная функция. В частотной области соотношение входным и выходным сигналами получается простым умножением преобразования Фурье входного сигнала на преобразование Фурье импульсной характеристики.

Более общим образом можно описать линейные стационарные системы с помощью z-преобразования импульсной характеристики.

. (1.44)

Часто z-преобразование импульсной характеристики называется передаточной или системной функцией. Передаточная функция на единичной окружности (т.е. при ) является частотной характеристикой системы.

Если область сходимости передаточной функции включает единичную окружность, то система устойчива и наоборот.

Если систему можно описать линейным разностным уравнением с постоянными коэффициентами, то ее передаточная функция является отношением полиномов.

(1.45)

Следовательно, с точностью до скалярного множителя А передаточная функция может быть полностью описана картиной полюсов и нулей в z-плоскости.

Соотношение (1.45) не содержит указаний об области сходимости передаточной функции. Это находится в соответствии с тем фактом, что разностное уравнение неоднозначно определяет импульсную характеристику линейной стационарной системы. Для данного отношения полиномов различные способы выбора области сходимости приведут к различным импульсным характеристикам, но они все будут удовлетворять одному и тому же разностному уравнению. Если предположить, что система устойчива, то нужно выбрать кольцевую область, включающую единичную окружность.

 

z-преобразования некоторых функций

Функция времени Преобразование Лапласа z-преобразование
(штырек)
(ступенька)

 



Дата добавления: 2020-06-09; просмотров: 607;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.