Законы логики высказываний - это формулы, принимающие значение «истина» при всех наборах значений своих пропозициональных переменных.


Такие всегда истинные выражения называют иногда еще и общезначимыми. Помимо того, что они позволяют исследовать мысль, не обращаясь к ее содержанию, сверх этого они еще и помогают совершать логические операции. Их можно в некоторых случаях исключать из выражений или, наоборот, вставлять в них, не внося при этом искажений в содержание заложенной в формулу мысли. Особенно часто приходится использовать такой прием при работе с нормальными формами.

С помощью тождественно-истинных выражений легко записать и законы традиционной логики. Так, в формуле

нетрудно узнать закон запрета противоречия, а в формуле

- закон исключенного третьего. В самом деле, заменив в первой из них буквенную переменную на предложение «Гриб ядовитый», мы получим из данной формулы правильное высказывание: «Неверно, что гриб ядовитый и неядовитый». Проделав то же самое со второй, мы получим другое истинное высказывание: «Гриб либо ядовитый, либо неядовитый».

На данной стадии мы в состоянии дать обоснование данным законам, опираясь на изложенные ранее принципы и правила. Формула для закона противоречия преобразуется в выражение, не содержащее отрицания над скобкой, если провести ряд эквивалентных замен, используя правила (1) и (2):

Легко видеть, что в данной дизъюнкции при любом значении переменной будет содержаться 1, а этого достаточно для того, чтобы дизъюнкция оказалась истинной (см. также раздел об элементарных дизъюнкциях).

Общезначимость формулы для закона исключенного третьего непосредственно вытекает из полученной нами ранее формулы:

Применяя ее к выражению , получим:

Следовательно, и это выражение является истинным при любом значении переменной.

Формулы символической логики второй разновидности из приведенных в таблице являются тождественно-ложными, поскольку всегда принимают значение «ложь». В этом смысле они противоположны формулам-законам. Правильнее всего поэтому называть такие выражения противоречиями.



Дата добавления: 2020-06-09; просмотров: 483;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.