Монотонные последовательности


 

1) Если xn+1 > xn для всех n, то последовательность возрастающая.

2) Если xn+1 ³ xn для всех n, то последовательность неубывающая.

3) Если xn+1 < xn для всех n, то последовательность убывающая.

4) Если xn+1 £ xn для всех n, то последовательность невозрастающая.

Все эти последовательности называются монотонными. Возрастающие и убывающие последовательности называются строго монотонными.

 

Пример. {xn} = 1/n – убывающая и ограниченная

{xn} = n – возрастающая и неограниченная.

 

Пример. Доказать, что последовательность {xn}= монотонная возрастающая.

Найдем член последовательности {xn+1}=

Найдем знак разности: {xn}-{xn+1}=

, т.к. nÎN, то знаменатель положительный при любом n.

Таким образом, xn+1 > xn. Последовательность возрастающая, что и следовало доказать.

 

Пример. Выяснить является возрастающей или убывающей последовательность {xn}= .

Найдем . Найдем разность , т.к. nÎN, то 1 – 4n <0, т.е. хn+1 < xn. Последовательность монотонно убывает.

Теорема. Монотонная ограниченная последовательность имеет предел.

 

Число е

 

Рассмотрим последовательность {xn} = .

Эта последовательность - монотонно возрастающая и ограниченная сверху, т.е. имеет конечный предел. Этот предел принято обозначать буквой е.

 

Можно показать, что число е иррациональное и его значение равно 2,71828…



Дата добавления: 2020-06-09; просмотров: 436;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.