Электростатическое поле распределения зарядов с симметрией плоскости


Симметрия плоскости соответствует распределению зарядов внутри неограниченной плиты толщины 2L с

 

(8.1)

 

Середина плиты совмещена с плоскостью xy. Распределение зарядов не зависит от , т.е. имеет симметрию плоскости. Пусть - напряженность при z > 0, а - напряженность при z < 0. Тогда симметрия приводит к тому, что

 

(8.2)

(8.3)

 

Для того, чтобы иметь дело с конечными значениями зарядов - в теореме Гаусса, рассмотрим область трехмерного пространства, ограниченную плоскостями

 

 

а) Найдем внутри плиты.

Через точки и , отстоящие друг от друга на расстоянии проведем плоскости, параллельные ху и применим теорему Гаусса для полученного объема в форме параллелепипеда (рис.9).

Рис.9

 

Параллелепипед имеет шесть граней. Ненулевой вклад в уравнение, выражающее теорему Гаусса дадут только элементы

 

(8.4)

 

а четыре элемента от боковых граней вида

 

(8.5)

 

перпендикулярны вектору напряженности и поэтому поверхностные интегралы по боковым граням обращаются в нуль.

Таким образом, теорема Гаусса выражается соотношением:

 

(*)

 

Вычислим количество заряда, которое имеет рассматриваемый параллелепипед:

 

(**)

 

Подставим (**) в (*) и получим

 

(8.6)

(8.7)

 

б) Аналогичными рассуждениями находим напряженность поля вне плиты:

 

(8.8)

(8.9)

 

в) Согласно полученным результатам и (8.2) составим дифференциальные уравнения для определения потенциалов внутри и вне плиты.

Учтем, что при z > 0 и при z < 0. Тогда формулы (8.7) можно объединить:

 

(8.10)

 

Следовательно, внутри плиты:

 

(*)

 

Положим, что потенциал обращается в нуль в середине плиты. Тогда постоянная интегрирования A, становится равной нулю. Для внешнего потенциала имеем

 

(**)

 

Условия «сшивания» внешнего и внутреннего решений при , приводят к тому, что

 

(***)

 

В нижнем полупространстве имеют место соотношения;

 

(8.11)

 

Условия «сшивания» внешнего и внутреннего решений имеют вид:

 

(****)

 

Объединим полученные формулы следующим образом:

 

(8.12)

(8.13)

 

Эти формулы описывают значения потенциалов внутри и вне плиты при любых значениях z.

 



Дата добавления: 2016-06-22; просмотров: 1738;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.