А. Электростатическое экранирование


 

 
 

Если в электростатическое поле внести проводник, то в результате поляризации электроны в нем начнут перемещаться в сторону положительно заряженной пластины и на поверхности проводника, обращенной к этой пластине, возникает отрицательный потенциал, а на противоположной – положительный. Положительная и отрицательная части проводника создают собственное вторичное поле, которое равно внешнему и имеет противоположное ему направление. Следовательно, внешнее поле и поле, созданное проводником, компенсирует друг друга внутри тела и на поверхности проводника. Этим объясняется распределение зарядов только на поверхности проводника. Внутри проводника поле отсутствует. Этим явлением электростатической индукции и пользуются для электростатического экранирования. В самом деле, если внутри металлического тела поле равно нулю, то достаточно поместить в него защищаемое устройство, чтобы защитить его от влияния электростатического поля.

 

Рис. 9.3. Электростатический экран.

 

Электростатический экран является элементом, реализующим принцип P1''' компенсации в определенном пространстве порождающего поля порожденным.

Если теперь подключить металлическую оболочку к земле (к корпусу), то заряды с внешней поверхности оболочки стекут на корпус, т. к. он обладает большой емкостью, и вне оболочки поле окажется равным нулю. Таким образом электростатическое экранирование заключается в замыкании электростатического поля на поверхность металлического экрана и отводу электростатических зарядов в землю (на корпус). Заземление является необходимым элементом электростатического экранирования. Экраны изготавливают из материалов с высокой проводимостью, имеющие или замкнутый объем, или в виде металлической перегородки, соединенные с корпусом. Применение сеточных материалов не обеспечивает полного экранирования.

 

А. Компоновка объекта и экрана

 

Для установления конкретных реализаций структуры (схемы) объединение экрана и защищаемого объекта исходят обычно из особенностей объекта, т.е. форма и размеры (унарное отношение R1=íq1, E1ý) экрана и взаимное положение экрана и объекта (n-арное отношение Rn=íqn, Ený), определяется условиями защиты и характеристиками объекта.

 

Б. Магнитостатическое экранирование.

 

 
 

Магнитостатическое экранирование основано на отражении и компенсации ( диамагнитный материал экрана) рис.9.4

Рис.9.4. Диамагнитный экран

 

или поглощении (ферромагнитный материал) магнитного поля в толще экрана рис.9.5.

 
 

Рис.9.5. Магнитооптический поглощающий экран

 

Такие экраны используют для защиты от постоянного или медленно изменяющегося переменного магнитного поля. Качество экранирования тем выше, чем больше величина магнитной проницаемости материала и чем меньше в экране стыков и швов, идущих поперек направления магнитных силовых линий. Чем больше величина магнитной проницаемости материала экрана, тем тоньше его можно делать. Для повышения эффективности экранирования в ряде случаев применяют экраны, составленные из нескольких слоев, но более тонкого материала. Требуемая эффективность экранирования может быть получена уже у двух или трехслойного экрана.

 

В. Электромагнитное экранирование

 

Заключается и том, что переменное высокочастотное электромагнитное поле, проходя через металлический лист перпендикулярно, или под некоторым углом к его плоскости, наводит в этом листе вихревые токи, поле которых ослабляет действие внешнего поля. В данном случае металлический лист является электромагнитным экраном.

С точки зрения волновых представлений эффект экранирования проявляется из-за многократного отражения электромагнитных волн в его толще. Глубина проникновения представляет собой постоянную величину, характеризующую материал экрана и зависящую от частоты:

______

/ r

S = 0,52 Ö -------- ,

mг·f

 

где r - удельное сопротивление материала экрана, Ом·м;

mг – относительная магнитная проницаемость материала;

f – частота, МГц.

Многообразие и случайный характер факторов, определяющих эффективность экранирования, существенно затрудняет инженерные расчеты. Поэтому прибегают к обобщению экспериментальных данных и построению на этой основе формул для расчета эффективности экранирования в широком диапазоне частот.

 

 

9.3.1.3. Особенности конструирования электромагнитных экранов

 

Для установления конкретных реализаций структуры (схемы) объединение экрана и защищаемого объекта исходят обычно из особенностей объекта, т.е. форма и размеры (унарное отношение R1=íq1, E1ý) экрана и взаимное положение экрана и объекта (n-арное отношение Rn=íqn, Ený), определяется условиями защиты и характеристиками объекта.

Известно несколько способов устранения взаимных связей, не предусмотренной функциональной схемой, с помощью экранов: блочное и общее экранирование РЭС.

Поэлементное экранирование. Размеры экрана определяются габаритами защищаемого элемента. Экран должен вписываться в общее устройство, обеспечивать минимальную реакцию на экранируемый объект, ремонтопригодность и нормальный режим работы РЭС.

Блочное экранирование. Экран представляет собой кожух РЭС и должен обеспечивать нормальный тепловой режим, защиту от пыли и влажности, устойчивость к вибрации, ослабление воздействия внешних полей.

Общее экранирование. Экран представляет собой самостоятельное сооружение, предназначенное для зашиты от внешних полей или локализации излучения радиоэлектронного комплекса. При экранировки помещения решается целый комплекс вопросов, связанных с защитой помещения, размещением аппаратуры, вентиляцией и др.

Б. Материалы экранов

 

В качестве материалов экранов используют латунь, алюминиевые сплавы, электротехническую сталь и пермаллой. Сортамент этих материалов широк – от листов до порошка.

Листовые металлические материалы толщиной 1,5…2 мм. Наиболее технологичны стальные листы - могут легко свариваться.

Фольга. Толщина 0,01…0,05 мм. Алюминий, латунь. Клеится к основе. Электростатическое экранирование.

Сеточные металлические материалы. Легки, удобны в сборке и эксплуатации, хороший воздухообмен, но малая механическая прочность, стареют.

Токопроводящие краски. В пленкообразующий материал вводится токопроводящий наполнитель в виде порошка алюминия, графита, окиси металлов и др. Не нужны специальные экраны. Краска наносится на любую поверхность. Проводимость зависит от толщины покрытия, концентрации пигмента и др. Устойчивы к климатическим условиям и механическим воздействиям.

Металлизация поверхностей. Распылением наносится на любую поверхность, включая полимеры. Наиболее распространенные покрытия – алюминий и цинк. Толщина слоя зависит от свойств подложки. Но при всех равных условиях эффект экранирования металлизированного слоя хуже, чем сплошным листом той же толщины, что объясняется отличием химического состава покрытия от структуры исходного материала. Применяется для экранирования помещений и кабин.

Специальные ткани. Основа такой ткани – капроновая нить, скрученная с посеребренной медной проволокой диаметром 35…50 мкм. Так как провод изолирован, то поверхностное сопротивление такой ткани велико. Предназначена для защиты от СВЧ, шьют специальные костюмы для индивидуальной защиты.

 

В. Особенности конструкций электромагнитных экранов.

 

Реальные экраны, состоящие из большого числа элементов, нельзя рассматривать как однородные. В местах стыков листов и соединений элементов ток проходит через участки с сильно уменьшенным сечением. Это приводит к местным увеличениям плотности и неравномерному распределению токов, к возрастанию сопротивления экранов и снижению эффективности в целом. Проникновение энергии через отверстия, щели и другие дефекты конструкции экрана снижает эффективность экранирования.

Конструктивно экран состоит из нескольких составных частей, которые в процессе сборки соединяются между собой разъемными или неразъемными соединениями. Кроме мест соединений в экране имеются отверстия для монтажа проводов. Чтобы уменьшить влияние подобных дефектов необходимо придерживаться определенных правил при конструировании экранов:

1) Поверхность стыка основных частей экрана не должна пересекать магнитных

силовых линий поля и линий наведенных в экран токов. Стык должен быть направлен вдоль этих линий.

       
   

Правильно Неправильно

 

Рис. 9.6. Расположение стыков частей экранов.

 

2) Отверстия в экране не должны пересекать линий наведенных в нем токов, поэтому большой размер отверстия должен располагаться параллельно этим линиям.

 

 
 

Рис.9.7. Расположение отверстий в экранах.

 

3) При конструировании многослойных экранов каждый слой экрана должен быть изолирован от других слоев. В таких конструкциях токи, наведенные в каждом из слоев многослойного экрана, имеют свое направление. Если же слои экрана электрически соединить между собой, то наведенные токи будут взаимно компенсироваться и эффективность экрана резко упадет.

Следует отметить, что соединение листов обшивки экранов ( внахлест, встыкфальц ), а также контактные соединения в экранах сильно влияют на эффективность экранирования, поэтому конструктивное выполнение этих мест соединений тщательно проработаны и представлены в справочной литературе.

 

9.3.2. Обеспечение помехоустойчивости электромонтажных линий.

 

Электромонтажом называется совокупность элементов конструкции РЭС, предназначенная для обеспечения электрически неразрывных связей при объединении модулей нижестоящего конструктивного уровня в модули вышестоящего уровня.

Электромонтаж предназначен для реализации электрически неразрывных связей, по которым распространяются непрерывные или дискретные сигналы. При распространении сигнала по электромонтажным линиям связи могут измениться его форма, фаза, а также произойти затухание амплитуды сигнала. Кроме того, из-за наличия непредусмотренных электрической схемой связей между различными электромонтажными линиями могут возникнуть так называемые перекрестные помехи, выражающиеся в непредусмотренном появлении сигнала в соседней линии. Причинами помех являются протекающие по электромонтажным линиям токи и наведенные ими на соседние проводники паразитные сигналы, а также электромагнитные поля от внутренних и внешних источников излучения и возникающие в следствии этого блуждающие токи в несущих конструкциях.

Поскольку в общем случае электромонтажная линия состоит из элементов контактирования (например, контактные площадки, переходные отверстия на ПП и т.д.) и элементов межконтактной коммутации (например, провода, кабели, трассы ПП и т.д.), то оптимальное построение электромонтажа включает в себя и оптимизацию элементов контактирования и элементов коммутации.

В дальнейшем подробнее рассмотрим непредусмотренные электрической схемой связи между элементами конструкции, сопровождающиеся передачей электромагнитной энергии, - так называемые паразитные связи в конструкции РЭС. Из всех элементов конструкции наиболее подвержены таким связям именно элементы электромонтажа.

 

 

9.3.2.1. Паразитные связи электромонтажных линий.

 

При проектировании электромонтажных линий необходимо предварительно определить тип линии, затем возможные виды и оценки паразитных связей в ней и дать конструктивную реализацию наиболее помехоустойчивой линии связи.

 

А. Электрическая длина электромонтажных линий.

 

Проектирование электрических цепей должно вестись с учетом возможных допустимых искажений передаваемых сигналов. Электрические связи между отдельными конструктивными элементами обычно делят на:

- электрически короткие связи;

- электрически длинные связи.

Электрически короткой линией связи называют такую, в которой время распространения сигнала много меньше длительности фронта передаваемого импульса, а при непрерывном сигнале не превышает 0,1 полуволны. Сигнал, отраженный от несогласованной нагрузки, в такой линии достигает источника раньше, чем успеет существенно исказиться полезный сигнал. Электрические свойства такой линии оцениваются сосредоточенными характеристиками: сопротивлением R, емкостью С и индуктивностью L.

Электрически длинная линия связи характеризуется временем распространения сигнала больше, чем длительность фронта передаваемого импульса, а для непрерывного сигнала – временем задержки большим, чем 0,1 полупериода. В такой линии отраженный сигнал приходит к ее началу после окончания фронта импульса и искажает его форму. При расчетах такие линии рассматривают как линии с распределенными параметрами.

Отсюда можно сделать вывод, что одна и та же линия для одного сигнала должна рассматриваться как длинная, а для другого может быть и короткой.

Все линии связи, используемые для соединения ячеек, кассет, панелей в пределах одного блока, обычно считаются короткими. Линии связи межблочные и межстоечные в зависимости от передаваемых сигналов могут быть отнесены либо к длинным, либо к коротким.

Искажение сигналов в электрически длинной линии существенно влияет на работу аппаратуры. Если переходной процесс апериодический, то быстродействие цифровой аппаратуры уменьшается, т.к. увеличивается время нарастания амплитуды сигнала до номинального значения и тактовая частота следования импульсов должна быть уменьшена. Если переходной процесс колебательный, то это может вызвать ложное срабатывание логических элементов при значительной амплитуде колебаний около порогового значения. Кроме того, выбросы напряжения могут привести к пробою р- n переходов полупроводниковых приборов.

Отраженные в электрически коротких линиях импульсы не представляют большой опасности из-за малой длительности отраженных сигналов. Но в таких линиях существенными становятся паразитные связи.

 

В. Виды паразитных связей.

 

Известно, что важной характеристикой электрического проводника в электрическом поле является его емкость, т.е. способность проводника с током и окружающей его среды накапливать энергию электрического поля. В магнитном поле такой характеристикой является индуктивность. Это явление порождает возникновение паразитных связей. Появление перекрестных помех в РЭС обусловлено взаимодействием электромонтажных линий, причиной которого являются паразитные связи.

Основные виды паразитных связей делят на:

- емкостные,

- индуктивные,

- кондуктивные.

Емкостная связь осуществляется через паразитную емкость, а индуктивная – через паразитную индуктивность между электромонтажными линиями. В тех случаях, когда элементы электромонтажной линии являются общими для нескольких электрических цепей, могут иметь место кондуктивные паразитные связи. В качестве таких общих участков выступают шины питания, земляные шины, внутреннее сопротивление источника питания, общие участки корпуса и лепестки, к которым подсоединяются одновременно различные цепи.

 

В. Связь конструкивных и электрических параметров электромонтажных линий.

 

Величина и характер искажений сигналов в линиях связи, а также уровень перекрестных помех между соседними электромонтажными линиями зависят от электрических параметров электромонтажа: индуктивности, емкости линии, значения и неоднородности волнового сопротивления линии, паразитной электрической емкости, взаимоиндуктивности между соседними линиями связи, общего для различных линий сопротивления.

Значения электрических параметров электромонтажных линий связи, в свою очередь, зависят от конструктивных факторов: поперечного сечения, длины, конструктивного исполнения (печатный монтаж, объемный монтаж и т.п.), взаимного расположения линий связи, физических параметров конструкционных материалов. Поэтому конструктор РЭС должен уметь вести борьбу с искажениями электрических сигналов конструктивными мерами.

Для этого необходимо определить каким образом и как влияют на изменение параметров Е электромагнитной подсистемы Sэм характеристики пространственной подсистемы Sпр – форма и размеры элементов связи, и параметры механической подсистемы Sм – свойства материалов электромонтажных линий.

Индуктивность и емкость линий, а также волновое сопротивление в зависимости от схемы расположения проводников и их конструктивных параметров определяется по формулам, приводимым в справочной литературе. Используя графические и аналитические зависимости, по значениям конструктивных параметров можно вычислить электрические параметры электромонтажных линий связи, выполненных из объемного провода и печатного монтажа. Некоторые виды линий, электрические характеристики которых могут быть определены через указанные геометрические параметры, приведены на рис.9.8.

       
   

а) б)

 

       
   

в) г)

 

       
   

д) е)

 

       
   

ж) з)

 

Рис. 9.8. Варианты линий, с установленными характеристиками.

 

9.3.2.2. Уменьшение наводок в соединительных цепях.

 

Ранее установлено, что нарушение устойчивости работы электрической схемы может происходить не только за счет помех, передаваемых по электромагнитному полю, но и за счет мешающих сигналов, протекающих по монтажным проводам. Эти сигналы за счет паразитных связей могут наводить в других цепях сигналы помех, которые приводят к потере устойчивости, нарушению работы и сбою команд в радиоустройствах. Так, при неправильной конструкции усилителя постоянного тока склонны к самовозбуждению, при этом паразитная генерация возникает в широком диапазоне частот от единиц герц до сотен мегагерц.

Чаще всего конструктору приходится решать задачу определения допустимой длины соединительной линии, исходя из допускаемой задержки импульса и возможного мещающего сигнала. Все эти расчеты имеют свои сложности, особенно при определении суммарной помехи. Поэтому конструкторы РЭС придерживаются общего правила: “Длина проводников, лежащих в одной плоскости, должна быть минимальной.”

Для предотвращения паразитных монтажных связей в разрабатываемом устройстве (с частотой до 400 МГц) рекомендуются следующие конструктивные меры:

1) Установить развязывающие фильтры в высокочастотных и импульсных схемах непосредственно у активного элемента. Для проводов питания, проводов, подходящих к замыкающим контактам реле и переключателей, располагать цепи фильтрации непосредственно у стенки корпуса. Каскады с выходным сигналом весьма высокого и весьма низкого уровня должны помещаться в отдельные отсеки.

2) Каждый элемент, подверженный опасности наводок, должен иметь только одно соединение с шиной земли.

3) РЭС, состоящие из нескольких блоков, должны соединяться кабелем из экранированных проводов, благодаря этому токи, протекающие в противоположных направлениях будут равны и результирующее магнитное поле будет нулевым.

4) Кабели, по которым проходят импульсные сигналы с крутым фронтом или сигналы от источников с большим внутренним сопротивлением, должны быть экранированы.

5) Несущие конструкции должны быть соединены с шиной заземления, но не должны сами служить такой шиной.

6) Все стыки металлических несущих конструкций должны быть сварными, чтобы не возникало переходных электрических контактов. Электрическое сопротивление на стыке соединенных частей не должно превышать 2,5* 10 –3 Ом.

7) Для защиты от низкочастотных магнитных полей предпочтительна стальная оплетка экранированного кабеля.

8) Для блоков, рассчитанных на высокие частоты, материал корпуса и шасси должен иметь повышенную электропроводность( серебренная латунь).

 

 

9.3.2.3. Уменьшение помех в шинах питания и земли.

 

Электрическое объединение элементов РЭС осуществляется по двум каналам связи: сигнальным и цепям питания. Шины питания служат для подведения энергии к элементам от низковольтных источников постоянного напряжения. При использовании одного источника напряжения питание к элементам подводится с помощью двух проводников – прямого и обратного. Часто на элементы необходимо подавать напряжение от нескольких источников с разными номиналами. В этих случаях для уменьшения количества шин питания обратные проводники объединяют в одну шину, которую соединяют с корпусом устройства и называют шиной земли. Так возникает кондуктивная паразитная связь в схеме за счет общих участков протекания тока.

При работе блоков и устройств, когда происходит включение одних элементов и выключение других, потребление тока по шинам питания изменяется, что приводит к нежелательным падениям напряжения и паразитным наводкам.

Так как шины питания имеют и паразитную индуктивную связь с сигнальными проводниками, то, в зависимости от величины этой связи и перепада напряжения и тока при переключении элементов, на сигнальных связях наводятся помехи сравнительно большой величины. При определенных условиях эти помехи могут вызывать ложное срабатывание схем. Кроме того, изменение величины тока в шине питания приводит к возникновению в ней переходного процесса. Это обусловлено тем, что шина питания, как и любая сигнальная связь, обладает емкостью, индуктивностью, волновым сопротивлением и различной степенью согласования на концах. Переходный процесс в шине питания приводит к колебанию напряжения, приложенного к элементу, что изменяет, с одной стороны, режимы его работы, а с другой – параметры выходного сигнала.

Для уменьшения наводок, связанных с падением напряжения на шинах питания и земли и переходными процессами в них, используют следующие рекомендации:

1) Непосредственно возле точек присоединения электронной схемы к шинам питания и земли между последними устанавливают индивидуальные сглаживающие конденсаторы (развязывающие фильтры ), которые, будучи заряжены до величины источника напряжения, являются как бы индивидуальными источниками питания, максимально приближенными к схеме физически.

2) Уменьшение общих участков протекания токов элементов по шинам питания. Устанавливают дополнительные перемычки в шинах питания и земли, которые уменьшают длину общих участков протекания токов элементов.

3) Использование металлического листа в качестве земли. В блоки, субблоки, панели устанавливают металлический лист, к которому припаивают обратные провода от всех закрепленных ячеек и модулей.

4) Использование сплошных металлических прокладок в качестве шин питания. В многослойных ПП использование сплошного металлического слоя в качестве шин питания уменьшает собственное индуктивное сопротивление шин питания, увеличивается взаимная емкость между шинами питания.

В высокочастотных РЭС ( от единицы мегагерц и выше ) сказывается влияние емкости монтажных соединений относительно элементов конструкции и влияние индуктивности соединительных проводников и электрического соединения цепей заземления. Высокочастотные части РЭС рекомендуется выполнять в виде отдельных конструкций, в которых предусматривается устранение взаимных наводок и связей.

 

9.3.2.4. КОНСТРУКЦИИ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКОГО ЗАЗЕМЛЕНИЯ.

 

А. Соединение схемы с корпусом земляной шиной.

1) Каждая точка электрической схемы, имеющая нулевой потенциал, соединяется с помощью провода или шины с ближайшей точкой корпуса. Число таких соединений может быть достаточно большим. На платах выполняется развитая металлизированная поверхность, к которой присоединяются выводы микросхем и других элементов. В свою очередь, эта металлизированная поверхность соединяется с корпусом устройства. Если сборочная единица сочленяется с остальной схемой разъемным соединением, то в разъеме контакты земляного провода для обеспечения надежности и меньшего переходного сопротивления дублируются. Это – наиболее простой и распространенный способ.

2) Этот способ используется в высокоточной измерительной аппаратуре. При работе РЭС из-за электромагнитного излучения в металлических частях несущих конструкций возникают блуждающие токи. При неудачном выборе точки заземления электрическая схема теряет устойчивость. Предвидеть заранее, как будут протекать наведенные в несущих конструкциях токи, не представляется возможным. При изготовлении единичных образцов аппаратуры земляной провод поочередно подсоединяют к различным точкам конструкции и в том месте, где схема будет работать устойчиво, делают точку заземления. Но такой прием не может быть рекомендован при серийном производстве.

Для уменьшения влияния паразитных наводок прокладывают земляную шину на изоляторах, а один ее конец соединяют с корпусом. Обычно для этого используют толстую (более 3 мм) проволоку или полосу прямоугольного сечения. К такой земляной шине подсоединяют все точки схемы с нулевым потенциалом.

 

Б. Конструкция контактов для механического крепления на корпус.

 

Полное электрическое сопротивление шины земли складывается из сопротивления шины и сопротивления в зоне контактного соединительного узла. Основное требование к электрическим контактам заземления – обеспечение их малого и стабильного сопротивления.

Элементами электрического заземления являются лепестки, наконечники земляных шин, контакты заземления и т.п. Корпуса, к которым подключается заземление, выполняют чаше всего из листового или литьевого алюминия и магниевого сплавов. Контактные лепестки делают из алюминиевого сплава, плакированного медью, или медные.

С помощью элементов электрического заземления обеспечиваются два вида контактных соединений: неразборные и разборные.

Если корпус из листового алюминия, то контактное соединение может быть получено:

 

 
 

а) точечной контактной сваркой б) холодной сваркой давлением

 
 

Рис. 9.9 Сварное соединение.

 

Если корпус литой алюминиевый, то контактирование осуществляют аргонодуговой сваркой.

 
 

Рис. 9.10 Сварка алюминиевым корпусом.

 

С литым магниевым корпусом контактный элемент соединяют стальным самонарезающим винтом с последующей пайкой его конусной головки к лепестку.

 
 

Рис. 9.11 Сварка с магниевым корпусом.

 

Если шасси выполнено из тонколистового (не более 1 мм) материала, то лепестки вырубают непосредственно в корпусе шасси.

 
 

 

Рис. 9.12 Лепесток в корпусе.

 

 
 

Разборные контактные соединения применяются тогда, когда предполагается разъединение контактного узла во время ремонта или профилактических работ, требующих демонтажа с отсоединением заземления.

 

Рис. 9.13 Легкоразборный зажим.

 

9.3.2.5. ЭЛЕМЕНТЫ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ.

 

Элементы электрических соединений и электромонтаж занимают большое место в РЭС. Монтаж микросхем на печатные платы первого уровня, объединение элементов первого уровня на втором и т.д. – всюду требуется использовать различные методы выполнения соединений и монтажа, которые призваны обеспечивать электрическую и механическую прочность конструкции РЭС и неразрывность схемы. Так как число электрических соединений в РЭС достигает десятков и сотен тысяч, то правильному выбору методов соединений и их надежности следует уделять большое внимание.

Электромонтаж в конструкции РЭС должен:

1) обеспечивать нормальную работу в заданных климатических и механических воздействиях на аппаратуру;

2) соответствовать техническим условиям, принципиальным и электромонтажным схемам, таблицам соединений;

3) обеспечивать высокую надежность электрического соединения;

4) боть ремлнтопригодным;

5) обеспечивать удобную и безопасную работу обслуживающего персонала;

6) допускать возможность подключения контрольно-измерительной аппаратуры к любой точке схемы;

7) боть технологичным и максимально автоматизированным;

8) иметь максимально короткие длины связей и малый уровень наводимых помех.

Электрическое соединение должно:

1) иметь прочность не ниже соединяемых элементов;

2) иметь минимальное омическое сопротивление;

3) не изменяться со временем;

4) при выполнении не вносить изменения в соединяемые элементы;

5) не иметь материалов вызывающих коррозию;

6) контролироваться простыми и надежными средствами.

В настоящее время существует большое количество способов электромонтажа. На разных конструктивных уровнях используются различные способы его реализации. Так, на 1-м конструктивном уровне используется межконтактная пленочная коммутация и неразъемное контактирование. На 2 и 3 уровнях – печатный монтаж, контактирование пайкой или сварка, а с другими модулями – разъемами или пайкой. На более высоких конструктивных уровнях коммутация выполняется объемными проводниками, а конструирование – пайкой, сваркой, разъемами.

Трудоемкость электромонтажных работ составляет 40…60 % всей трудоемкости изготовления изделий, а от их качества зависит надежность РЭС при эксплуатации.

 

А. Внутриблочный монтаж.

 

Внутриблочный монтаж выполняется объемным гибким проводом или плоским кабелем. Необходимо помнить о следующем:

- минимальный внутренний радиус изгиба проводника должен быть не менее диаметра проводника;

- провода питания ( переменного тока ) следует свивать для уменьшения возможных наводок;

- провода, подходящие к сменным элементам, должны иметь запас по длине позволяющим делать повторную заделку провода;

- провод не должен касаться острых металлических кромок;

- монтажные провода должны обеспечивать свободный доступ к элементам для контроля и ремонта;

- монтажные провода целесообразно свивать в жгут, при этом обеспечивается возможность расчленения монтажных операций на ряде более простых и монтажные работы удешевляются.

Жгут составляют из параллельно расположенных проводников. Экранированные провода и провода меньшего сечения располагают внутри жгута. Вяжут жгут нитками № 00 с шагом вязки 20…40 мм. Если РЭС работает в условиях механических воздействий, то перед обвязкой жгута обматывают киперной лентой.

 
 

Рис.9.14. Вязка жгута.

 
 

Жгуты крепятся к стенкам блоков или шасси скобами, при этом между жгутом и металлической скобой обязательно должна боть прокладка изхлорвинила или лектрокартона. Скобы устанавливаются на расстоянии 10 диаметров жгута. В местах перехода жгута через металлические шасси или экраны устанавливаются изоляционные втулки.

 
 

Рис.9.15 Жгут со скобой. Рис.9.16. Жгут со втулкой.

 

При переходе жгутов с неподвижной части на подвижную их распологают так, чтобы они работали на изгиб, а не кручением. Это уменьшает вероятность обрыва проводников. Подвижные части жгутов заключают в эластичные трубки, что защищает их от повреждений. Выбор монтажного проводника производится в зависимости от протекающего тока и допустимого перегрева проводника. Диаметр монтажного проводника:

d=1,13

где I- ток нагрузки, А;

- плотность тока, А/мм2 .

Марки и сечения проводников для объемного монтажа в ячейках и блоках имеют широкую номенклатуру и их применение зависит от изделия.

Электрическое соединение монтажных проводов на печатной плате осуществляется использованием металлизированных отверстий, переходных пистонов и монтажных лепестков. Выступающая часть жылы монтажного провода над поверхностью платы не должна превышать пределов 0,5…1,6 мм. Необходимо механическое закрепление монтажных проводов у места электрического присоединения. Для этого можно применять специальные колодки.

 

Б. Разъемные соединения.

 

Разъемное электрическое соединение ячеек и субблоков с блоком осуществляется с помощью разъемных соединителей. Разъемный соединитель (разъем) состоит из вилки и розетки. В состав вилки входят штыри контактных пар, а в состав розетки – гнезда контактных пар. Кроме них конструкция разъема включает в себя ловители, ключ и элементы крепления разъема. Ловители обеспечивают совмещение штырей и гнезд контактных пар, ключ предназначен для исключения неправидьного сочленения вилки и розетки. В некоторых случаях применяется замок для фиксации сочленения.

Большое распространение получили разъемы типа ГРПМ ( гиперболоидный разъем, прямоугольный, малогабаритный ). Гиперболоидное соединение – самое надежное соединение. Особенность его – наличие контактной гиперболоидной многоточечной поверхности в паре штырь-гнездо, образующейся между гладким цилиндрическим штырем и несколькими упругими бронзовыми проволоками, расположенными под углом 80 к образующей по внутренней поверхности цилиндрического гнезда.

 

Рис.9.17 Гиперболоидное соединение.

 

Электрические соединители применяются для внутриблочного печатного и объемного монтажа и для межблочного объемного монтажа.

При печатном разъеме плата вилки соединителя, например, ГРПМ – 9, устанавливаются на печатные платы и их выводы припаиваются к контактным площадкам плат. Такие соединители имеют индекс “Н “.

Вилки разъемов ГРПМ, предназначены для установки на печатные платы, выпускают как с прямыми выводами штырей ( индекс “П“), так и с угловыми (индекс “У”), запаиваемых в металлизированные отверстия плат.

А ) Установка вилки разъема ГРПМ9-Н

Б ) Установка вилки разъема ГРПМ9-У

В ) Установка вилки разъема ГРПМ1-У

 

 
 



Дата добавления: 2017-01-26; просмотров: 3862;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.074 сек.