Характеристическая функция течения при совместном действии источника и стока


 

 

Рис. 7.23. Схема расположения источника 01 и стока 02

В разделе 7.1.6. подробно исследовалось семейство изобар в случае потока от нагнетательной скважины к эксплуатационной. О линиях тока было замечено, что они образуют семейство окружностей, ортогональных изобарам. Уточним вопрос об особенностях семейства линий тока на основе метода теории функций комплексного переменного.

Сохраняя прежние обозначения и придерживаясь рис. 7.23, получим на основании формул (7.60) и (7.61) характеристическую функцию течения от нагнетательной скважины к эксплуатационной

. (7.62)

где r1 и r2– расстояния некоторой точки М до источника 01 и стока 02 , соответственно, θ1 и θ2 – соответствующие полярные углы; М – модуль массового дебита стока и источника.

Отделяя в (7.62) действительную часть от мнимой, получим

, (7.63)

Отсюда:

, (7.64)

Из (7.64) следует, что уравнение семейства изобар запишется в виде

,

где С постоянное.

Уравнение линий тока получается из второй формулы (7.64):

θ1-θ2*,(7.65)

где С* – постоянное.

Рассмотрим уравнение (7.65). Выразим θ1 и θ2 через координаты точки М (х, у) в соответствии с рис. 7.23.

.

Подставив значения θ1 и θ2 в уравнение (7.65) и учитывая, что а2-a1=2a, будем иметь после несложных алгебраических преобразований:

(7.66)

где С** - новая постоянная.

Из (7.66) видно, что центры окружностей имеют координаты . Так как абсцисса центров окружностей не зависит от С**, то она одинакова для всех окружностей и, следовательно, все окружности расположены на прямой , То есть на прямой, параллельной оси , делящей расстояние между стоком и источником пополам. Радиус окружностей .

Рис. 7.24. Фильтрационное поле источника и стока

Отсюда абсциссы точек пересечения

то есть линии тока проходят через сток и источник.

Таким образом, линии тока представляют собой окружности, проходящие через центры обеих скважин, и ортогональны окружностям - изобарам. Центры всех этих окружностей расположены на прямой (эквипотенциальной линии), делящей расстояние между скважинами пополам (рис. 7.24).

 



Дата добавления: 2020-03-17; просмотров: 554;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.